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ABSTRACT

Cooperative tasks require coordinated joint actions amongthe
participants, to the extent that a failure in an individual’s ac-
tion may have catastrophic consequences on the task of the
group as a whole. One such activity is choir singing, where
highly synchronised performance of the individual singersis a
prerequisite to successful performance. The aim of this work
is to provide a quantitative measure of the level of coopera-
tion, established through the degrees of synchronisation be-
tween singers’ physiological responses. To this end, we em-
ploy two new measures, the intrinsic phase synchrony and
intrinsic coherence, which quantify synchronisation in respi-
ration and heart rate variability (HRV) of: (i) five members of
a choir and the conductor during a rehearsal and a real per-
formance, and (ii) five members of the audience attending the
performance. Both the proposed techniques successfully re-
veal degrees of synchronisation of singers’ physiologicalsig-
nals which can be used as physically meaningful measures of
the level of cooperation.

Index Terms— NA-MEMD, intrinsic multiscale analy-
sis, intrinsic phase synchrony, coherence, choir singing

1. INTRODUCTION

Cooperative human activities require high degree of mental
and physical synchronisation among multiple participants, to
the extent that synchrony underpins performance level in ac-
tivities such as rowing, marching and choir singing. Choir
singing is particularly interesting as participants do notuse
any tools; it can be performed with or without musical in-
struments, whereby the conductor, essentially, plays ‘human
instruments’—the soprano, alto, tenor and bass. The normal
respiratory rate in adults varies between 12 and 18 breaths
per minute [1], yet despite this natural variation, breathing in
unison among individuals is a prerequisite in choir singing,
where the singers’ breathing rhythm is dictated by the tempo
and demands of a musical score. These demands and physical
constraints give rise to both direct and indirect synchronyand
causality in cardiac and respiratory activity at multiple levels
– a subject of this study.

A challenge in quantifying synchrony among choir mem-
bers is that, depending on the score and tempo, breathing
rhythms of singers can be either: (i) voluntarily controlled by
themselves, in order to perform long or short inhalation or
exhalation, or (ii) involuntarily controlled by the autonomic
nervous system (ANS). The ANS comprises the sympa-
thetic (SNS) and parasympathetic nervous (PNS) subsystems,
whereby the SNS, in addition to controlling the respiration
in stressful situations, also accelerates other functions, such
as the arterial blood pressure and heart rate [2, 3, 4]. This
is achieved by dilating bronchioles in the lungs, and by reg-
ulating neuronal and hormonal responses to stimulate the
body. The PNS, on the other hand, slows down physiological
functions when the body is at rest.

The interplay between the SNS and PNS, among other
factors, manifests itself in variations of the timing of thecar-
diac cycle – heart rate variability (HRV) – in response to both
external and internal factors. Changes in HRV are commonly
evaluated in two frequency bands: (i) the low frequency (LF)
band, 0.04-0.15 Hz, which is linked to the interaction of the
SNS and PNS, and (ii) the high frequency (HF) band, 0.15-
0.4 Hz, which primarily reflects the activity of the PNS [5]. In
addition, it is well understood that breathing modulates HRV
via a phenomenon referred to as the respiratory sinus arrhyth-
mia (RSA), whereby the heart rate accelerates during inspi-
ration and decelerates during expiration. The RSA is usually
attributed to the activity of the PNS, so that the HF component
of HRV is dominated by the changes in heart rate induced by
breathing.

Both the respiration and the electrical activity of the heart,
measured via the electrocardiogram (ECG), typically exhibit
nonlinear and nonstationary characteristics, and requirespe-
cialised signal processing techniques which offer physically
meaningful signal representation; one such technique is the
empirical mode decomposition (EMD) algorithm [6] . Empir-
ical mode decomposition is an adaptive, data-driven, method
for the analysis of nonlinear and nonstationary time series. It
employs the so-called sifting process to decompose a given
signal into its multiple narrow-band amplitude/frequency
modulated (AM/FM) components, which are referred to as
intrinsic mode functions (IMFs) and are used as bases for
signal representation.
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Unlike conventional projection based time-frequency al-
gorithms, such as the short-time Fourier transform and the
discrete wavelet transform, the IMFs – the adaptive basis
functions within EMD – enable physically meaningful inter-
pretation of instantaneous phase and frequency, and a highly
localised time-frequency representation via the Hilbert trans-
form [7, 8]. Applications of EMD range from biosignal
analysis [9, 10], through to mechanical systems [11] and
seismology [12].

Due to the empirical nature of EMD, its direct component-
wise application to multivariate signals may result in: (i)
IMFs with different oscillatory components across multiple
data channels for a given IMF index – a phenomenon known
as mode mixing, and (ii) multiple IMFs containing similar
oscillatory modes for a given data channel – a phenomenon
referred to asmode splitting. To mitigate these problems in
multivariate scenarios, several extensions of EMD have been
proposed, which include the bivariate EMD (BEMD) [13],
trivariate EMD [14], multivariate EMD (MEMD) [15, 16] and
noise-assisted MEMD (NA-MEMD) [17]. The general mul-
tivariate MEMD has found applications in brain-computer
interface [18, 19], image processing [20, 21], nuclear engi-
neering [22] and system characterisation [23].

Such a decomposition into multiple multivariate data-
driven bases offers unique opportunities; for example, our
recent work [23] proposed a framework referred to asin-
trinsic multiscale analysiswhich combines MEMD with
standard data-association measures, such as phase synchrony
(PS), sample entropy (SE) and correlation, in order to quan-
tify intra- and inter-component dependences of a complex
system such as multiple synchronies and causalities.

The degree of synchronisation between data channels is
typically measured using correlation, coherence and phase
synchrony. Similar to correlation, coherence is a measure of
linear synchronisation between the two signals, sayxi(t) and
xj(t). It accounts for both the amplitude and phase informa-
tion, and yields a data association metric which is a function
of frequency,f , given by
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whereSij(f) is the cross-spectral power density between
xi(t) andxj(t), andSii(f) andSjj(f) are respectively the
power spectral densities ofxi(t) andxj(t). TheCOH values
range from0 to 1, with 0 indicating a non-coherent relation-
ship and1 the perfect coherence [24, 25].

Unlike the coherence, the phase synchrony metric quan-
tifies only the phase relationship betweenxi(t) and xj(t),
without accounting for amplitude information; it is definedin
terms of the deviation from perfect synchrony via the phase
synchronisation index (PSI) [23], given by

ρ(t) =
Smax − S
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) within thenth bin [26]. The maximum en-

tropySmax has been found to beSmax = 0.626+0.4 ln(W−
1) [23]. The PSI values range from 0 to 1, with 1 indicating
the perfect phase locking and 0 non-phase-synchronous rela-
tionship.

The intrinsic phase synchrony (IPS) was originally pro-
posed in the intrinsic multiscale analysis framework in [23],
in order to generalise standard phase synchrony by equipping
it with the ability to operate at the intrinsic scale level. It
employs MEMD to decompose a given multivariate signal
into narrowband intrinsic oscillations (IMFs), which makes
it possible to quantify the temporal locking of the phase in-
formation in IMFs using the standard phase synchronisation
index (PSI). The work in [23] also introduced an intrinsic
correlation metric which measures phase and amplitude rela-
tionships between instantaneous amplitudes and frequencies.
This measure can be further extended to quantify phase and
amplitude relationships between intrinsic modes in the data
via the IMFs (as a function of scale), a procedure to which we
refer to as theintrinsic coherence(ICoh).

The aim of this study is to build upon the enhanced dis-
crimination capability of the intrinsic phase synchrony and in-
trinsic coherence data association metrics, in order to charac-
terise the scale-wise dependencies in the respiratory and HRV
signals of: (i) choir during a rehearsal and a real performance;
(ii) the conductor in both of these situations; (iii) a subset of
audience during the real performance. The so-enabled inves-
tigation of the manifold couplings in human physiological re-
sponses during a performance promises new, objective mea-
sures of the degree of human cooperation, together with new
avenues for multidisciplinary research on thequantified self.

2. DATA ACQUISITION AND PRE-PROCESSING

Respiratory and ECG signals were recorded from a conductor
and a subset of five members of an 18-member choir during
5-minute periods of a low-stress rehearsal and a high-stress
public performance. During the performance, physiological
responses were also recorded from five members of the au-
dience. Respiration of each participant was recorded using
a custom-made respiration belt placed around the chest. For
all participants, the ECG was recorded with three electrodes
placed on the skin, just below the collar bone. The respi-
ration belt and the electrodes were connected to an 8-channel
portable biosignal data logger powered by a rechargeable coin
cell battery. The data logger sampled the signals at1 kHz and
saved the respiratory and ECG data onto a micro-SD card; the
respiratory signals were then downsampled to10Hz, and the
trend was removed. The data logger also recorded timestamps
onto the micro-SD card in order to guarantee the synchroni-
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sation of the devices between rehearsal and performance. The
HRV was estimated from the ECG data by band-pass filtering
between8Hz and30Hz, and the subsequent R-peak detec-
tion to obtain the RR-interval (i.e. HRV) time series with a
sampling frequency of4Hz [27].

3. SYNCHRONY ANALYSIS

The PSI and COH indices of the respiratory and HRV signals
were estimated in six categories as follows:

1. Among the five members of the choir during the
rehearsal—within-group estimation.

2. Between the conductor and the five members of the
choir during the rehearsal—between-group estimation.

3. Among the five members of the choir during the
performance—within-group estimation.

4. Between the conductor and the five members of the
choir during the performance—between-group estima-
tion.

5. Among the five members of the audience during the
performance—within-group estimation.

6. Between the conductor and the five members of the
audience during the performance—between-group es-
timation.

For the categories (1)-(4), the respiratory (or HRV) signals
of the conductor (channel 1) and the five members of the choir
(channels 2-6) during both the rehearsal and the performance
were used to form 6-channel data which was decomposed us-
ing NA-MEMD with 10 adjacent WGN channels. For the
categories (5) and (6), channels 2-6 contained data recorded
from the five members of the audience, and the decomposition
was carried out in the same manner as for the categories (1)-
(4). It should be noted that in all the categories NA-MEMD
was applied to 6-channel respiratory data and 6-channel HRV
data separately.

The IMFs produced by the NA-MEMD with indices 3-7
of the 6-channel multivariate HRV signal of choir members
contained the physically meaningful frequency range0.04Hz
to 0.4Hz, that is, exactly the LF/HF frequency band of HRV.
For convenience we have identified and used the same band
in IMF indices 5-9 of respiration. The full band of interest
in both the HRV and respiration data was produced by sum-
ming up the corresponding IMFs, in order to obtain the de-
sired scale in data. The PSI and COH among the members of
the choir (and the audience) were obtained by averaging PSI
and COH values calculated from every combined-IMF pair
of the data channels 2-6 (choir only), while PSI and COH
between the conductor and each member of the choir (and
the audience) were obtained by averaging the PSI and COH
values between the combined-IMF of channel 1 (conductor)
and combined-IMF of channels 2-6 (choir). The PSI indices
between the combined-IMFs of the noise channels were also
estimated in order to provide the PSI of random signals as a
benchmark. For the coherence analysis, the power spectral

densities were estimated using the MVAR model of order 3
for the HRV signal of both the choir and the audience, and of
orders 1 and 2 respectively for the respiratory signals of the
choir and the audience.
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Fig. 1. The PSI of the respiratory and HRV signals
within the same subject group and between the subject
groups, where for brevity Resp.=Respiration, reh.=rehearsal,
perf.=performance, aud.=audience and cond.=conductor.

4. RESULTS OF THE ANALYSIS

Phase synchrony.Fig. 1 shows the PSIs of the respiratory
and HRV data for the 6 considered categories, estimated from
50 realisations of NA-MEMD. For each trial of NA-MEMD,
the Z-test at a significance level of 0.05 was performed, in or-
der to reveal statistical differences in the respiratory and HRV
PSI values between the categories.

Observe that in the performance conditions, both the res-
piratory and HRV PSIs among the choir members signifi-
cantly increased compared to the rehearsal. This indicates
that the breathing rhythms, and by virtue of RSA the car-
diac activities too, of the choir members exhibited stronger
dynamic coupling which was reflected in an increase in the
synchrony of their physiological responses.
Conjecture #1: The intrinsic synchrony of physiological re-
sponses of choir members is a signature of increased coordi-
nation between performers and their enhanced mental aware-
ness in various types of performance. This is for the first time
that we have been able to quantify the involvement of physi-
ological mechanisms which are responsible for the change in
the balance between the SNS and PNS.

Observe that the values of PSI indices of the respiratory
and HRV signals among the audience were lower than those
for the choir, both during the rehearsal and performance.
Conjecture #2: The selection of participants from the audi-
ence did not follow specific selection criteria (e.g. musical
background) which may explain the more random nature of
their physiological responses.

Fig. 1 also shows that the respiratory and HRV PSIs be-
tween the conductor and the members of the choir were lower
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than PSIs among the members of the choir, in both the re-
hearsal and performance scenarios.
Conjecture #3: The physiological responses of the conduc-
tor were modulated by both the piece of music performed (as
indicated by a degree of coupling with the choir) and the phys-
ical activity involved in the act of conducting.

Fig. 1 highlights that PSIs between human subjects were
significantly higher than noise PSIs, thus indicating that hu-
man PSIs were not random; also the PSIs of HRV exhibited
similar patterns to those present in the respiratory signal—a
consequence of RSA.
Coherence analysis.Fig. 2 illustrates the coherence analysis
of respiration and HRV, estimated for the 6 categories consid-
ered. Fig. 2(a) shows respiratory coherence among the mem-
bers of the choir during both the rehearsal and performance,
together with those among the members of the audience.

Observe the peaks in the frequency range0.2Hz to
0.35Hz which indicate the coherence in breathing at nor-
mal rates. The members of the audience breathed faster than
the choir, resulting in coherence at higher frequencies. Con-
versely, owing to long exhalation while singing, the choir
exhibited high coherences in the low frequency region of
0.04Hz to0.05Hz (ellipse 1).
Remark #1: The coherence of the choir during the perfor-
mance was similar to that during the rehearsal, while the
coherence between between the conductor and the members
of the choir was markedly higher (see Fig. 2(b), ellipse 2).
This indicates a higher degree of cooperation during the per-
formance, when the stakes are high and both the conductor
and the choir feel the pressure and thus the urge to work extra
hard in order to produce a spot on performance.

Fig. 2(c) shows HRV coherences among the members of
the choir during the rehearsal and performance, and those
among the members of the audience during the performance.
Remark #2: The higher COH values among the choir in the
HF band (0.15Hz to0.4Hz) of HRV during the performance,
compared to the rehearsal, can be attributed to the RSA (el-
lipses 3 & 4). This indicates a higher degree of cooperation
which is reflected in a more pronounced synchronisation be-
tween individuals’ cardiac activity mediated by respiration
via RSA, additionally notice how virtually no coherence is
detected in the cardiac activity of the members of the audi-
ence.

5. CONCLUSIONS

This study has employed intrinsic phase synchrony and intrin-
sic coherence to quantify phase and amplitude relationships in
the respiratory and cardiac signals of the choir, the conductor
and the audience, in order to investigate degrees of coopera-
tion during a social task. The results have shown that each
group is represented by a distinctive degree of joint synchro-
nisation of participants’ physiological responses, caused by
the act of performance. While the choir has demonstrated a
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Fig. 2. The COH values of the respiratory and HRV data.
(a) Respiratory COH within the same group.(b) Respira-
tory COH between groups.(c) COH of HRV within the same
group.(d) COH of HRV between groups.

marked increase in coordination from the rehearsal to the per-
formance, less agreement has been observed between the sub-
ject groups (choir, conductor, audience), with the lowest coor-
dination observed for the audience. This can be attributed to
each group experiencing the performance in different physical
and mental ways, as exemplified by the lower synchronisa-
tion between the groups. On the signal processing side, it has
been shown that intrinsic phase synchrony has captured phase
relationship of both physiological signals in all situations ef-
fectively, yielding a meaningful and straightforward to inter-
pret data association metric. We have also illuminated the
coherence effects between the sympathetic and parasympa-
thetic nervous systems in the participants, primarily mediated
by respiration; these could not be found using intrinsic phase
synchrony, however, the coherence is less amenable to phys-
ical interpretation. Both the considered intrinsic measures
have designated a quantitative approach to assessing jointen-
deavours, and have paved the way for mathematical charac-
terisation of cooperative physiological systems across human
activities. Both the intrinsic phase synchrony and intrinsic
coherence, however, are time-varying measures – therefore
average PSI and COH are provided. Future work will focus
on the quantification of time-varying dependencies of the res-
piratory and ECG signals.
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