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ABSTRACT 

 

Independent vector analysis (IVA) has exhibited great 

potential for the group analysis of magnitude-only fMRI 

data, but has rarely been applied to native complex-valued 

fMRI data. We propose an adaptive fixed-point IVA 

algorithm by taking into account the extremely noisy nature, 

large variability of the source component vector (SCV) 

distribution, and non-circularity of the complex-valued fMRI 

data. The multivariate generalized Gaussian distribution 

(MGGD) is exploited to match the SCV distribution based 

on nonlinearity, the shape parameter of MGGD is estimated 

using maximum likelihood estimation, and the nonlinearity 

is updated in the dominant SCV subspace to achieve 

denoising goal. In addition, the pseudo-covariance matrix is 

incorporated into the algorithm to represent the non-

circularity. Experimental results from simulated and actual 

fMRI data demonstrate significant improvements of our 

algorithm over a complex-valued IVA-G algorithm and 

several circular and noncircular fixed-point IVA variants. 

 

Index Terms—Independent vector analysis (IVA), 

complex-valued fMRI data, non-circularity, subspace, 

nonlinearity 

 

1. INTRODUCTION 

 

Independent component analysis (ICA) has been widely 

applied to the analysis of functional magnitude resonance 

imaging (fMRI) data. When performing ICA of multi-

subject fMRI data, as typically done by group ICA [1], the 

independence of spatial maps (SMs) is assumed to achieve 

source separation. Independent vector analysis (IVA), as a 

kind of joint ICA, exploits the dependence of similar SMs 

across multi-subject fMRI datasets in addition to the 

independence of distinct SMs. As a result, IVA can provide 

superior performance in terms of capturing inter-subject 

variability [2-4]. 

IVA was originally proposed by Kim et al. in 2006 to 

solve the permutation problem in frequency-domain blind 

source separation (BSS) of speech signals [5]. Afterwards, a 

number of IVA algorithms focused similarly on the 

frequency-domain solution of convolutive BSS. Typical 

algorithms include IVA using the multivariate Laplace 

distribution (IVA-L) [6, 7]; fast fixed-point IVA (FIVA) 

employing a spherically symmetric, exponential norm 

distribution (SEND) or spherically symmetric Laplace (SSL) 

distribution [8]; non-circular FIVA (non-FIVA) utilizing the 

nonlinear functions to match the SCV distributions [9]; and 

IVA assuming multivariate generalized Gaussian 

distribution (MGGD) [10]. In addition, an adaptive IVA 

algorithm was proposed for separating the convolutively 

mixed acoustic signals. The multivariate Gaussian mixture 

model was utilized as the source prior, and the parameters of 

which was adaptively estimated using the EM algorithm [11]. 

Note that these algorithms are essentially complex-valued. 

However, they are tuned to separate the mixed speech 

signals, thus may obtain unsatisfying results for group 

analysis of the complex-valued fMRI data. 

The first application of IVA to multi-subject fMRI data 

was presented by Lee et al., a multivariate Laplace 

distribution was utilized (IVA-L), and magnitude-only fMRI 

data were analyzed [6, 7]. There are also other candidate 

algorithms that can be used to analyze magnitude-only fMRI 

data. For example, IVA using the multivariate Gaussian 

distribution (IVA-G) [12], combined IVA-G and IVA-L 

(called IVA-GL, using IVA-G to initialize the demixing 

matrix and IVA-L to perform the subsequent separation) 

[12], IVA with the Kotz family of distribution [13], and an 

adaptive MGGD-based IVA algorithm [14]. Some of these 
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algorithms have found promising results from magnitude-

only fMRI data [2-4, 6, 7]. 

Although magnitude-only fMRI data are extensively 

studied, fMRI data are initially acquired as complex-valued 

image pairs including magnitude and phase information. 

Analysis of complex-valued fMRI data can provide 

additional insights beyond magnitude-only data [15, 16]. 

However, to the best of our knowledge, there has been no 

application of IVA to the complex-valued fMRI data. Due to 

the high noise level and the large variability of the SCV 

distribution, it is hard to obtain good results by using the 

IVA algorithms proposed for frequency-domain speech 

separation, or by using the complex-valued IVA algorithm 

with a fixed noncircular multivariate Gaussian distribution 

[17]. 

As such, we propose an adaptive fixed-point IVA 

algorithm in an effort to deal with the analysis of complex-

valued fMRI data. Since MGGD contains multivariate 

Gaussian and Laplace distributions, we adaptively learn the 

SCV distribution using MGGD-based nonlinearity, and 

estimate the shape parameters using maximum likelihood 

estimation (MLE). As the complex-valued components of 

fMRI are naturally noncircular [18, 19], we incorporate the 

contribution of the pseudo-covariance matrix into the 

algorithm. Furthermore, motivated by the strategy of 

subspace denoising [20], we update the MGGD-based 

nonlinearity in the dominant SCV subspace to address the 

noise problem. Simulated and actual fMRI data are used to 

evaluate the proposed algorithm. 

 
2. FIXED-POINT IVA 

 

Assuming there are K subjects, the IVA model for multi-

subject fMRI analysis is: 

 ( ) ( ) ( )( ) ( ),1k k km m k K  x A s   (1) 

where 
 ( ) ( )

1( ) [ ( ), , ( )]
kk k T N

Nm s m s m s  is a zero-mean 

and unit-variance SM source vector of subject k, N is the 

number of SM sources, 1 m M  , and M is the total 

number of the in-brain voxels obtained by flattening the 

volume image data. 
 ( ) ( )

1( ) [ ( ), , ( )]
kk k T N

Nm x m x m x  is 

the observed fMRI data of subject k, which is generally 

compressed by PCA and whitened. ( )k N NA  is the 

mixing matrix that contains the time courses (TCs) 

information. The nth SCV is denoted as 
(1) ( )( ) [ ( ), , ( )]K T K

n n nm s m s m s , 1, ,n N . Hereafter, 

we omit m for simplicity. By learning the demixing matrix 
( )k

W , IVA estimates the nth SM component of subject k as 
( ) ( ) ( )( )k k H k

n ny  w x , where ( )k

nw  is the nth column of ( )k
W . 

IVA generally minimizes the mutual information among 

the estimated SCVs [7, 8]: 

   ( )

1 1

E log ( ) log det
N K

k

IVA n

n k

p C
 

    y W   (2) 

where ( )np y  is the multivariate probability density 

distribution of SCVs, C is the constant term (1) ( )( , , )KH x x . 

The FIVA algorithm [8] was extended from the 

complex-valued fastICA algorithm [21], in which the 

demixing matrices ( )k
W  are orthonormal in each iteration, 

thus the second term of Eq. (2) is zero. Eventually, the IVA 

objective function is minimized by minimizing the first term 

of Eq. (2) as follows: 

    2

1 1

E log ( ) E
N N

FIVA n n

n n

p G
 

   
  y y   (3) 

The SCV distribution ( )np y  is directly related to a real-

valued nonlinear function ( )G  . 

 
3. PROPOSED ALGORITHM 

 

The subspace method is typical for denoising. For the 

complex-valued fMRI data, the first eigenvalue of the 

covariance matrices 
1

1
( ) ( )

M H

n n nm
m m

M 
 C y y  of each 

SCV 
ny  is much larger than the other eigenvalues (referring 

to Fig. 1). This indicates that the nonlinearity ( )G   in Eq. (3) 

can be learned within the one-dimensional subspace spanned 

by the dominant eigenvector [20]. Assume the dominant 

eigenvalue and eigenvector are 
n  and 

1=[ , , ]T

n n Knv vv , 

and let    
22

( )

1

KT k

n n n n n kn nk
q v y 


  v y , we use the 

following nonlinear function for Eq. (3): 

    
2

( )

1
( )

n

n
K k

n n n kn nk
G q q v y



 


 
    

   (4) 

and the MGGD-based SCV distribution [22, 23]: 

 
1

1
2

1
( ) exp ( )

2
n

T

n n n n n np
  

  
 

y Σ y Σ y   (5) 

where 
 

1 (2 )2

2

(1 (2 ))2 n
n KK

n

K K

K
  




 
, ( )   is gamma 

function; n  is the shape parameter, 1n   is the 

multivariate Gaussian distribution and 0.5n   corresponds 

to the multivariate Laplace distribution; and nΣ  is the 

symmetric positive definite matrix. 

We estimate the shape parameter 
n  using the MLE 

method with Newton-Raphson optimization [23] at each 

iteration: 

 
 

 

log ; (1), , ( )

log ; (1), , ( )

n n n

n n

n n n n

L M

L M


 

 
 

 

y y

y y
  (6) 

where the log-likelihood function of n  is given by 

 

 

1

1

log ; (1), , ( )

1
log log ( ) ( )

2 2

n

n n n

M
T

n n n n n

m

L M

M
M m m








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 (7) 
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and 
nΣ  is specifically defined to incorporate the subspace 

characteristics: 

 

2

1 1 2 1

2

1 1 2 2 2

2

1 2

n n n n Kn

n n n n Kn

n n

n Kn n Kn Kn

v v v v v

v v v v v

v v v v v



 
 
 
 
 
  

Σ   (8) 

Finally, by exploiting the noncircularity of the complex-

valued fMRI data, we explicitly utilize the pseudo-

covariance matrix  ( ) ( )E ( )k k T
x x  in the learning rule of 

( )k

nw  [9]: 

 

  

    
    

( ) ( )* ( )

2
( ) ( )

( ) ( ) ( )* 2 ( )*

E

E

E ( ) E ( )

k k k

n n n

k k

n n n n

k k T k k

n n n

y G q

G q y G q

y G q

 

  



w x

w

x x w

  (9) 

where ( )G   and ( )G   are the first and second derivatives 

of the nonlinear function ( )G  : 

 
1

( ) ( ) n

n n nG q q
     (10) 

 
2

( ) ( 1)( ) n

n n n nG q q
       (11) 

After updating 
 k

W , a decorrelation step is followed [8]: 

 
       1 2( ( ) )
k k k kH W W W W   (12) 

 
4. EXPERIMENTS AND RESULTS 

 

We generated ten simulated complex-valued fMRI datasets 

based on a real single-subject simulated fMRI data with 

eight components (http://mlsp.umbc.edu). The phase ranges 

of each SM and each TC are uniformly distributed from -

π/18 to π/18, thus all components are non-circular. For 

different subjects, the SM voxels are randomly decreased by 

20%, 50% and 80% with respect to the original ones 

(denoted as Δs = 20%, 50% and 80%) to simulate the inter-

subject variability. The complex-valued Gaussian noise was 

added to the mixed data at CNR = -10dB, -5dB, -3dB, 0dB, 

5dB and 10dB, respectively. The actual fMRI data are from 

16 subjects performing a finger-tapping motor task 

(referring to [16] for details), and were filtered by a 

10~80mHz band-pass filter. Fig. 1 shows the eigenvalues of 

the covariance matrices of all estimated SCVs from a case of 

simulated fMRI data (Δs=50%, CNR=5dB) and the actual 

fMRI data. The first eigenvalue of each SCV is much larger 

than the other eigenvalues for both datasets. This verifies the 

feasibility of the subspace nonlinearity. 

We compare our algorithm (called AFIVA) with five 

IVA algorithms including the complex-value IVA-G with a 

fixed noncircular multivariate Gaussian distribution [17], 

FIVA [8], non-FIVA [9], FIVAs and non-FIVAs that we 

added the subspace strategy into FIVA and non-FIVA. The 

nonlinearity based on SSL distribution was used for these 

four fixed-point algorithms. We used the number of 

components N = 8 for the simulated data and N = 40 for the 

actual fMRI data. 
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Fig. 1. The eigenvalues of the covariance matrices of all 

estimated SCVs from a case of simulated fMRI data 

(Δs=50%, CNR=5dB) (A) and the actual fMRI data (B). 

 

4.1. Simulated fMRI Data 

 

We used two indices to test the performance: (1) the joint 

normalized inter-symbol-interference (JISI) ranging from 0 

to 1, and 0 indicates an ideal separation [17]; (2) an error 

rate defined as the ratio of the number of wrong components 

to the number of subjects (i.e., K) within an SCV. A wrong 

component is determined if its Pearson correlation with a 

specific ground truth is not maximal while most of the other 

subject-specific components reach the maximum. Here we 

calculated an average error rate over eight SCVs to present a 

concise demonstration. The results were averaged over 20 

runs. Fig. 2 includes the results of the mean and standard 

deviation of JISI and the average error rate from all six 

algorithms. 
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Fig. 2. Comparison of the mean and standard deviation 

results of JISI (top row) and average error rate (bottom row) 

of the six algorithms from all cases of the simulated fMRI 

datasets (Δs=20%~80%, CNR=-10dB~10dB). 

Observing the top row of Fig. 2, we can see that our 

proposed method yields the smallest JISI when CNR≥-5dB, 

and exhibits advantages over the other algorithms at CNR = 
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-10dB when the SM variability is larger (Δs=80%). This is 

basically followed by non-FIVAs, FIVAs, non-FIVA, FIVA 

and IVA-G. As for the average error rate shown at the 

bottom row of Fig. 2, the proposed algorithm achieves the 

best results by significantly decreasing the number of wrong 

components, while non-FIVAs and FIVAs illustrate better 

results than non-FIVA, FIVA and IVA-G. Generally 

speaking, non-FIVAs and FIVAs demonstrate improvements 

over non-FIVA and FIVA due to utilizing the subspace 

nonlinearity to denoise the data, and non-FIVAs and non-

FIVA are better than FIVAs and FIVA by virtue of 

incorporating the pseudo-covariance matrix to emphasize the 

noncircularity. IVA-G did not obtain satisfying results. 

There may be two reasons. One is that IVA-G was not 

developed for the noisy complex-valued fMRI data as no 

denoising strategy was used. The other is that IVA-G 

utilized a fixed multivariate Gaussian distribution [17], this 

does not match the various distribution of the eight SCVs, as 

shown in Fig. 3 by the changing shape parameters of MGGD. 

In contrast, our method benefits from the subspace denoising 

scheme to deal with the high noise level problem of the 

complex-valued fMRI data and the good estimation of the 

shape parameters to match the varying SCV distributions 

(see Fig. 3). 
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Fig. 3. Comparison of the shape parameters estimated by the 

proposed algorithm with the ground truth. 

 

4.2. Actual fMRI Data 

 

For the actual fMRI data, we analyzed a task-related 

component that has SM and TC priors. More precisely, we 

utilized the GLM reference and the model TC used in [16] 

as the SM and TC ground truth. To compare among the six 

algorithms, we calculated the Pearson correlation 

coefficients between the magnitude of estimates and the 

ground truth, and computed the error rates as well. Note all 

of the SM estimates were denoised using the newly proposed 

phase-based method [16]. The results were also averaged 

over 20 runs. 

Fig. 4 illustrates much similar results as above. Our 

proposed method provides the best results followed by non-

FIVAs, FIVAs, non-FIVA, FIVA and IVA-G, while non-

FIVAs and FIVAs obtain similar results for the TC Pearson 

correlation coefficients and the error rates. Additionally, 

non-FIVAs and FIVAs show better results than non-FIVA 

and FIVA, and non-FIVAs and non-FIVA are better than 

FIVAs and FIVA. Fig. 5 displays a single run of estimated 

shape parameters for all 40 SCVs, ranging from 0.2887 to 

0.4950. This demonstrates that the SCV distributions from 

the actual fMRI data are also varying. Among others, the 

estimated shape parameter of the task-related component is 

0.4135 (mean) ± 0.0058 (standard deviation). 
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Fig. 4. Results of task-related component from actual fMRI 

data. (A) Pearson correlation coefficients of SMs with the 

GLM reference. (B) Pearson correlation coefficients of TCs 

with the model TC. (C) Error rates. 
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Fig. 5. An example of estimated shape parameters for all 40 

SCVs from the actual fMRI data. 

 

5. CONCLUSION 

 

This study proposes an adaptive fixed-point IVA algorithm 

in an effort to deal with the challenging problems posed by 

the extremely noisy nature, the varying SCV distribution, 

and noncircularity of the complex-valued fMRI data. The 

MGGD-based nonlinearity is exploited to match the SCV 

distribution and is updated in the dominant subspace of SCV 

to denoise the data. The pseudo-covariance matrix is 

explicitly incorporated into the learning rule to emphasize 

the non-circularity. We test the propose algorithm using both 

the simulated and actual fMRI data. The experimental 

results show that our method can well estimate the shape 

parameters of MGGD, and yield significant improvements 

over the four circular and noncircular fixed-point IVA 

algorithms, and the complex-valued IVA-G algorithm. 
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