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ABSTRACT

In this paper, we propose to analyze fetal heart rate (FHR)
signals by hierarchical Dirichlet process (HDP) mixture
models. We investigate whether the clustering results of
real-world FHR time series obtained by these models are
informative in terms of determining the health status of a
fetus. The FHR signals are divided into two groups, healthy
and unhealthy, according to the umbilical arterial blood pH
values of the fetuses. We computed the frequencies of clusters
appearing in each of the groups, and applied the Mann-
Whitney U test to compare the frequencies. The results
showed that the frequencies of appearance of certain clusters
are statistically significantly different across the two groups.
This indicates that certain clusters may relate to pathological
fetal heart rate patterns.

Index Terms— Fetal heart rate, Hierarchical Dirichlet
process, mixture model

1. INTRODUCTION

Childbirth is a natural process with outcomes generally
being good. However, neonatal morbidity and mortality
still occur for various reasons and sometimes due to lack
of proper treatment of the mother and the fetus. The
standard Apgar score system evaluates the newborn baby
on five criteria by physicians’ observations. It has been
in use for assessment of the neonatal health status and
the need for medical management for more than 50 years.
Determining the status of a fetus, however, is much more
challenging. One approach to such assessments is by
analyzing fetal heart rate (FHR) signals. It has been
argued that antepartum and intrapartum FHR signals provide
timely information of the fetal well-being. The National
Institute of Child Health and Human Development (NICHD)

This work has been supported by NIH under Award 1R21HD080025-
01A1.

and International Federation of Gynecology and Obstetrics
(FIGO) both published guidelines on FHR evaluation [1, 2].

Most of the time the evaluations of FHR signals are
performed visually by physicians and consequently are
subjective. With the goal of avoiding subjectivity, various
automated methods for analysis and classification have been
proposed. In [3], the authors employed signal processing
techniques and neural networks to detect the FHR patterns
defined in [1]. The results are promising since certain patterns
are closely related to fetal hypoxia, which is the major threat
to fetal health. In [4], generative models were used to classify
FHR signals into two categories. Satisfactory specificity
and sensitivity results based on pH values were obtained.
Other state-of-the-art signal processing methods have also
been proposed. Adaptive multiscale complexity analysis was
performed on FHR data in [5]. There, the goal was to detect
acidosis in fetuses based on characterization parameters. In
[6], entropy-based estimators were applied to identify fetal
distress. The results showed that the approximate entropy
index was significantly distinguishable between suffering and
normal fetuses.

The NICHD guidelines notwithstanding, the patterns in
FHR signals are rather irregular and hard to interpret. In other
words, the criteria in [1] are too strict and deterministic for
the detection of unusual patterns. Therefore, a more flexible,
and data-driven classification method is desirable. Dirichlet
process mixture models (DPMMs) are well-suited for such
classification tasks. DPMMs fall in the class of nonparametric
Bayesian models. These models do not specify the number
of clusters beforehand [7]. Instead, this number is inferred
from the data. The number of clusters theoretically may grow
to infinity as the number of data also increases to infinity.
DPMMs allow for new classes of patterns to be discovered
as more data are processed.

A more recent class of models are the hierarchical
Dirichlet process (HDP) models [8]. They enable cluster
sharing across datasets. This is particularly useful for topic
modeling in document processing. Clearly, topics are often
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shared in different articles from a corpus of articles, and one
should somehow benefit from this feature while performing
classification. Similarly, the patterns in FHR signals are
shared across different fetuses. This makes HDP mixture
models a promising tool for analyzing FHR signals obtained
from different fetuses jointly. In this paper, we propose to
exploit the potential of HDP mixture models in FHR signal
classification. By processing real-world FHR series, we
show that these models hold a high promise for accurate
classification.

The main contribution of this paper is twofold. We
propose the use of HDPs for FHR classification and show
on real data that the methodology has the potential to be
accurate. We also propose a set of features that when
used in conjunction with HDPs shows good classification
performance.

The paper is organized as follows. In the next section,
we provide a brief background on data acquisition and pre-
processing as well as HDPs. In Section 3, we propose the
details of feature extraction from FHR signals and clustering
by HDP mixture models. The results of the clustering are
shown in Section 4. Finally, in the last section we provide
conclusions.

2. BACKGROUND

2.1. Data acquisition and preprocessing

In our work we used the database from the Czech Technical
University (CTU) in Prague and the University Hospital in
Brno (UHB) (put together by Václav Chudáček and his
collaborators). The database is publicly available online.
It contains 552 cardiotocography (CTG) recordings, each
containing an FHR time series and uterine contraction (UC)
signals, both sampled at 4 Hz. Additional information,
including maternal data, delivery data, fetal data and fetal
outcome data are also provided in the database. More details
about it can be found in [9, 10].

It is inevitable that data acquired in realistic settings have
artifacts and, thus, have to be preprocessed before being
analyzed. The artifacts in FHR signals are generally caused
by maternal and fetal movements or displacements of the
transducer used in the acquisition. There are two types of
artifacts, either the measured samples are incorrect or they
are simply missing (e.g., they are equal to zero).

In practice, any successive five samples with differences
smaller than 10 bpm among them are considered stable
(provided that they are not zero). If these differences are
between 10 and 25 bpm, they are not stable, and if they are
greater than 25 bpm, they are considered artifacts. When
the samples are artifacts or are simply missing and their
duration is less than 15 seconds, they are substituted by
linear interpolation; otherwise the bad samples are simply
discarded without interpolation. For interpolation, we used

Fig. 1. Comparison between a raw FHR signal and the signal
obtained after its preprocessing.

the piecewise cubic Hermite polynomial. Figure 1 shows
a comparison of one FHR time series before and after
preprocessing.

2.2. Methods

The HDP model was proposed in [11]. It was obtained as
a recursive construction of models based on the Dirichlet
process. In brief, one defines a global measure G0, which
is distributed as a Dirichlet process, i.e.,

G0|γ,H ∼ DP (γ,H), (1)

where γ is a concentration parameter and H is a probability
measure. Then, given G0, we have conditionally independent
random measures Gj defined by

Gj |α0, G0 ∼ DP (α0, G0), (2)

where α0 is also a concentration parameter. One can use
metaphors to decribe the HDP model. One of them is the
Chinese restaurant franchise (CRF), which we adopt here.

Consider a Chinese restaurant franchise with several
restaurants, all of which share the same set of dishes. Each
restaurant has infinite number of tables. We let θji denote
customer i in restaurant j, and ψjt represent the dish served
at table t in restaurant j. We also let φ1, φ2, . . . , φK denote
K iid random variables distributed according to the base
measure H . This measure is the source of the global dish
menu.

Next, we need notation for counts of customers on each
table, and tables served with each dish. Let njtk denote the
number of customers in restaurant j at table t served with dish
k, and mjk be the number of tables in restaurant j serving
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dish k. The conditional distribution of customer θji given
θj1, . . . , θj,i−1, a scaling parameter α0, and a distribution G0

is given by

θji|θj1, . . . , θj,i−1, α0, G0

∼
mj·∑
t=1

njt·
i− 1 + α0

δψjt
+

α0

i− 1 + α0
G0,

(3)

where njt· represents the marginal count of the number
of customers in restaurant j at table t, mj· represents the
number of tables in restaurant j, and δψjt

is a probability
measure concentrated at ψjt. Recall that the distribution G0

is obtained by (1). This model describes how the ith customer
is seated in any restaurant, either by choosing an already
occupied table with probability proportional to the number
of customers at that table, or preferring a new table with
probability α0/(i− 1 + α0).

Now we consider the distribution of ψjt which is drawn
from the global menu. The distribution is given by [11]

ψjt|ψ11, ψ12, . . . , ψjt−1, γ,H

∼
K∑
k=1

m·k

m·· + γ
δθk +

γ

m·· + γ
H,

(4)

where the dot notation is defined similarly as in the previous
equation. As before, the probability of each dish at a table is
determined by the number of tables already serving the dish.
This completes the Chinese restaurant franchise metaphor of
HDP. Note that the dishes are shared across all the restaurants,
which is the key property of HDPs.

Finally, we briefly describe HDP mixture models
(HDPMMs). Once the dishes ψjt are drawn for each table,
we need to draw for each customer the actual plate served to
the customer. It is drawn from yet another distribution, and
we have

xjit|ψjt ∼ F (ψjt) (5)

where xjit is the plate of the ith customer in the jth restaurant
sitting at table t, F (ψjt) is a distribution of the plate given
the dish ψjt. In signal processing, the plates xji represent
observations.

In our work, we have predefined segments of data. Each
segment belongs to a certain cluster of similar segments. The
cluster of segments are all “customers seated” on a same table.
The number of different clusters is not predetermined. The
objective of our work is to determine if we can find types
of clusters that provide information about the well-being of
fetuses.

3. EXPERIMENTAL SETTINGS

In this section, we describe how the FHR signals are
processed after preprocessing and how they are classified
by the HDPMMs. In our description, we continue to use

the CRF metaphor. Consider each FHR time series to be a
restaurant. We divide each FHR series into small segments,
where each segment represents a customer. According to the
HDP mixture models, the segments form a mixture of clusters
(equivalent to dishes in the CRF metaphor), and the clusters
are shared among all the FHR series.

Before we proceed, we need to represent each segment
with a small set of features. These features are then used for
clustering. We reiterate that the number of clusters across
all the FHR series is not predetermined. First we explain
the extraction of features and then how we implement the
HDPMMs.

3.1. Feature Extraction

We set the length of one segment to be 40 samples (i.e.,
the segments were 10 seconds long). After preprocessing,
we computed the baseline of the FHR signal by a 5-min
median filter. Upon estimating the baseline, we subtracted it
from the FHR series. Therefore, the remaining signal reflects
the variation of the heart rate around the baseline. In our
work we did not use the shape of the baseline as part of our
classification procedure.

We experimented with different types of features,
including the mean, the variance, and the parameters of
an autoregressive exogenous (ARX) model of the segments.
Since we intended to model the FHR patterns defined in [1]
(acceleration, deceleration, etc), we chose the order of the
time component in the ARX model to be 2. Finally, we
worked with four parameters of the ARX model and the mean
value of the segment.

The ARX model of the segment had the form

xt = axt−1 + c2t
2 + c1t+ c0, (6)

where t is the time index of the observed sample xt in the
segment, and a, c0, c1, and c2 are unknown parameters of
the model, which are idiosyncratic for the segment. We
estimated these parameters by using MMSE estimators. The
MMSE estimates and the mean values were computed from
the residual signal (after the baseline was subtracted) instead
of the original FHR signal.

3.2. Clustering by HDPMM

In the experiments, we used the last 30 minutes of data.
Typically, the time series long before delivery are stationary,
and the data near delivery are more informative in predicting
fetal health. We selected 60 FHR signals, 30 of which
were from healthy and 30 from unhealthy fetuses. The
classification of the fetuses was based on the umbilical arterial
blood pH. After feature extraction, we had 60 sets of data,
each set having 180 feature vectors of dimension five. We set
the concentration parameters γ to 10 and α0 to 5.
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Fig. 2. The classification result of one FHR time series. Each
color represents a cluster.

The mixture was assumed to be distributed according
to a multivariate Gaussian distribution, with unknown mean
vector and unknown covariance matrix. In order to simplify
the computations, the base measure H was assumed to be the
normal-inverse Wishart distribution, which is the conjugate
prior of the multivariate normal distribution. This allowed
us to implement a collapsed Gibbs sampling scheme for
inference, as proposed in Section 5.1 in [11]. With this
scheme, one does not need to draw samples of the unknown
means and covariances of the multivariate Gaussians that
represent the clusters. This approach altogether reduced the
variance of the obtained results.

4. RESULTS

We ran the Gibbs sampler and after 50 iterations, four clusters
emerged from the data set. One example of clustering is
shown in Fig. 2. Each color in the graph represents a different
cluster. It is difficult to interpret each cluster visually, and in
particular, somehow connect it to a diagnosis.

In order to determine if the clusters have information
about the well-being of the fetus, we counted the number
of segments in each cluster of each FHR series. We wanted
to investigate whether the frequency of occurrence of each
cluster is different between healthy and unhealthy fetuses.
We computed the mean and 95% confidence interval of the
numbers of segments in each cluster of the healthy and
unhealthy group, respectively. The results are shown in Fig.
3. We also ran a Mann-Whitney U test to determine whether
each cluster is significantly different across the two groups.
The results are shown in Table 1. The significance level was
set to p = 0.05.

The statistical analysis of the clustering results showed
that three out of the four clusters had significant differences.
Cluster 2 appeared more often in the FHR signals of healthy
fetuses, whereas clusters 3 and 4 were seen more frequently
in unhealthy fetuses.

Fig. 3. Mean and 95% confidence intervals of 4 clusters.
Clusters marked with star are statistically significantly
different.

Table 1. Results of Mann-Whitney U test.
Cluster index 1 2 3 4
p-value 0.054 0.007 0.018 0.024
Significant No Yes Yes Yes

5. CONCLUSION

In this paper, we proposed the use of hierarchical Dirichlet
process mixture models for classification of FHR signals.
After preprocessing, baseline estimation and its subtraction
from the FHR signal, we applied ARX modeling of segments
of the signals of duration of 10 seconds. The parameters
of these signals were modeled as multivariate Gaussians
with unknown means and covariances. The hierarchical
Dirichlet process mixture model of the feature set produced
four different clusters. According to the statistical results
of these clusters, the numbers of segments in three of the
four clusters are significantly different between healthy and
unhealthy fetuses (with p values less than 0.05). The results
suggest that this approach to classification of fetal heart series
has strong potential and that it deserves further investigation.
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