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Abstract—Functional connectivity brain networks have been
shown to demonstrate interesting complex network behavior such
as small-worldness. Transforming networks to time series has
provided an alternative way of characterizing the structure of
complex networks. However, previously proposed deterministic
methods are limited to unweighted graphs. In this paper, we pro-
pose to employ the resistance distance matrix of weighted graphs
as the distance matrix for transforming networks to signals based
on classical multidimensional scaling. We present a framework
for obtaining information about the network’s structure through
the mapped signals and recovering the original network using
properties of the resistance matrix. Finally, the proposed method
is applied to characterizing functional connectivity networks
constructed from electroencephalogram data.

Index Terms—Resistance distance, Complex networks, Classical
multidimensional scaling, Functional brain connectivity.

I. INTRODUCTION

Advances in network analysis have provided valuable tools for
a better understanding of functional connectivity in the human
brain [1]. Functional connectivity has been defined as the statistical
dependence among brain regions [2]. Functional connectivity has
been quantified through both linear and nonlinear measures. However,
these pairwise relationships cannot describe the underlying topology
of the network [3]. Graph theory provides a mathematical framework
that allows for further understanding of the organization of the brain.
Functional connectivity networks can be constructed to model these
interactions where the nodes represent brain regions or electrodes
and the edges correspond to the relationships between them. Graph
theoretic measures such as the clustering coefficient and characteristic
path length have been used to quantify the amount of segregation and
integration in these networks, respectively. However, these metrics
have some limitations such as either focusing on the local organiza-
tion of the network or the global topology and not directly quantifying
the interaction between different subsystems of the network.

Some of the shortcomings of graph measures can be avoided by
exploiting the relationships between networks and signals. Recent
work in signal processing for graphs have focused on processing
signals on graphs [4] and representing networks as signals [5],
[6], [7]. For the latter, both deterministic and probabilistic methods
based on random walk theory [7] have been proposed to convert
networks into signals. Shimada [5] and Haraguchi [6] formulated
a deterministic method based on classical multidimensional scaling
(CMDS), allowing the transformation from complex unweighted
networks to time series. Under this transformation, the nodes of the

network correspond to time indices for the time series [8]. It was
shown that lattice networks transform to sinusoids and Watt-Strogatz
networks transform to random signals. Recently, Hamon et. al. [9]
have extended this method to the analysis of temporal networks.
However, all of these approaches have focused on binary graphs,
and therefore have limited applicability to weighted networks that
arise in neuroscience.

In order to construct signals from both unweighted and weighted
graphs, we propose to use the resistance distance of a connected graph
as the distance matrix for CMDS. The resistance distance matrix of a
graph was proposed in [10] in the context of chemistry. The resistance
distance between two nodes corresponds to the equivalent resistance
between them, considering the graph as an electric circuit [10].
Thus, the resistance distance takes into account the global structure
of the graph, when compared to the shortest path distance, which
reflects only information about one path. Moreover, the resistance
distance can be obtained from the pseudoinverse of the combinatorial
Laplacian of the graph [11] and is a valid distance matrix. Therefore,
it is an alternative distance matrix for CMDS.

The following sections of this article are organized as follows.
Section II presents background on graph theory, CMDS and phase
synchrony for the construction of functional connectivity networks
from electroencephalogram (EEG) signals. Section III presents the
proposed method for transforming weighted networks into signals and
reconstruction of networks from these signals. Section IV presents
results comparing the proposed method to the previous method
proposed by [5] for unweighted graphs. Finally, the proposed method
is applied to functional connectivity networks constructed from a
study of cognitive control.

II. BACKGROUND

A. Graph Theory

An undirected graph G=(V,E) consists of a set of N nodes, vi ∈V ,
and a set of M edges, ei j ∈ E. For unweighted graphs, the adjacency
matrix A = [ai j] is a binary matrix, where ai j = 1 when vertices i and
j are connected, and equals to zero when i = j or when the vertices
are not connected. For weighted graphs, the adjacency matrix W
has entries equal to ωi j representing the weight of the edge between
vertices i and j. The combinatorial Laplacian for unweighted graphs
is defined as L = ∆−A, where ∆ corresponds to the degree matrix
which is defined as the diagonal matrix with elements δi equal to the
degree of node vi. The entries of L are given by
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Li j =


δi, i = j ,
−1, (i, j) ∈ E,
0, otherwise,

(1)

where δi is the degree of vertex vi. Similarly, for weighted graphs
the combinatorial Laplacian can be defined as LW = ∆W −W, where
∆W is a weighted degree matrix whose entries are given by ∆W

ii =

∑
N
j=1
j 6=i

ωi j , where ωi j corresponds to the weight between nodes i and

j.

B. Classical Multidimensional Scaling

The objective of CMDS is to find a low-dimensional representation
of the data such that Euclidean distances between points are preserved
[12]. An Euclidean distance matrix D is transformed by

B =−1
2

JN D(2) JT
N , (2)

where JN = IN − 1
N 1N1N is a centering matrix, IN is an N × N

unity matrix, D(2) = D ◦D is the entry-wise squared distance ma-
trix, 1N is a N × 1 vector of ones. B is a positive semidefinite
matrix with rank(B) = C. Therefore B has C positive eigenvalues,
and N −C eigenvalues equal to zero. The eigendecomposition of

B results in B = PΛP =
(

PΛ
1
2

)
×
(

PΛ
1
2

)T
= XXT , where Λ =

diag(λ1,λ2, . . .λC), and Λ
1
2 = diag(

√
λ1,
√

λ2, . . .
√

λC), correspond
to the nonzero eigenvalues of B. Hence, the signals X are composed
of C components with N time points.

The distance matrix D is required to be a valid distance matrix and
to be conditionally negative definite in order to preserve the positive
semidefiniteness of B. D = [di j] based on the unweighted adjacency
matrix A = [ai j] has been defined as

di j =


0, i = j,
1, ai, j = 1 and i 6= j,
γ, ai, j = 0 and i 6= j,

(3)

where γ is a parameter that ensures the conditional negative definite-
ness of D. Here we consider γ = 1+ 1

N , as in [13]. It is important to
note that D does not contain information about the distance between
vertices, and only provides information related to whether the vertices
are connected or not.

C. Phase Synchrony

In the construction of a weighted connectivity graph from EEG
signals each vertex corresponds to an electrode and weights are
obtained from the phase synchrony between two regions. Here, the
signal's instantaneous phase is based on the RID-Rihaczek time-
frequency distribution as proposed in [14]. For a signal xi, define
Ci(t,ω) to be its complex RID-Rihaczek time-frequency distribution,
given by

Ci(t,ω) =
∫ ∫

exp
(
− (θτ)2

σ

)
︸ ︷︷ ︸

Choi-Williams kernel

exp( j
θτ

2
)︸ ︷︷ ︸

Rihaczek kernel

Ai(θ ,τ)e− j(θ t+τω)dτdθ ,

(4)

where Ai(θ ,τ) is the ambiguity function of xi:

Ai(θ ,τ) =
∫

xi(u+
τ

2
)x∗i (u−

τ

2
)e jθudu. (5)

The time-varying phase of the signal xi is computed as

Φi(t,ω) = arg
[

Ci(t,ω)

|Ci(t,ω)|

]
. (6)

Similarly, the phase difference between two signals xi and x j can
be computed as

Φi, j(t,ω) = arg

[
Ci(t,ω)

|Ci(t,ω)|
C∗j (t,ω)

|C j(t,ω)|

]
. (7)

The Phase Locking Value (PLV) between two signals xi and x j as
a function of time and frequency [15] is defined by

PLVi, j(t,ω) =
1
N

∣∣∣∣∣ N

∑
k=1

exp
(

jΦk
i, j(t,ω)

)∣∣∣∣∣ ,
(8)

where N corresponds to the total number of trials and Φk
i, j(t,ω) is

the phase difference between xi and x j as defined by (7) for the kth

trial.

III. RESISTANCE DISTANCE BASED NETWORK TO SIGNAL

TRANSFORMATION

A. Resistance distance

In order to extend the CMDS based network to signal transform
to weighted graphs, we consider the resistance distance matrix of a
graph, denoted as R. The resistance distance ri j between vertices i
and j is defined through the Moore-Penrose pseudo inverse of L, L†

[5]

ri j = (L†)ii +(L†) j j−2(L†)i j. (9)

Alternate definitions of R also exist, based on the determinant
of the Laplacian matrix [16]. It is also related to random walks,
where the resistance distance between two vertices is proportional
to the expected commute time of a random walk on the graph [17].
The resistance distance is a valid distance measure, satisfying the
following properties [18]:

ri, j ≥ 0 f or all i, j with equality i f and only i f i = j,

ri, j = r j,i,

ri, j + r j,k ≥ ri,k. (10)

R = [ri j] is a matrix of resistance distances, where each entry ri j
corresponds to the squared Euclidean distance [11]. In a connected
graph, ri j ≤ li j, where li j is the shortest path distance, and equality
holds when there is only one path between i and j [17]. Using R,
(2) is reformulated as

B =−1
2

JN RJT
N , (11)

to obtain a mapping to the Euclidean space and the signals X are
obtained as before (see (2)).

B. Reconstruction of the original graph

If the signals X are not distorted, then in principle the resistance
distance matrix R can be recovered from the signals through the
computation of the squared Euclidean distance between the points

R̂(X)i j =
C

∑
c=1

(
xic− x jc

)2
, (12)
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where C corresponds to the total number of components. It is possible
to recover the original adjacency matrix from R̂, for both weighted
and unweighted graphs as follows. First, we introduce τ [18] as

τi = 2−∑
j 6=i

r̂(i, j). (13)

For the next step, since R is nonsingular [11], we consider the
following expression of R̂−1 which follows from the inverse of
Euclidean distance matrices [19]:

R̂−1
=−1

2
L̂+

1
τ
′ R̂τ

ττ
′
. (14)

From (14), the Laplacian matrix L̂ is estimated as

L̂ =−2(R̂−1− 1
τ
′ R̂τ

ττ
′
). (15)

Given an estimate of the Laplacian matrix, the degree matrix ∆̂ is
estimated as the diagonal matrix those elements are the diagonal
entries of L̂

∆̂ = diag(L̂1,1, L̂2,2, ..., L̂N,N). (16)

Finally, the weighted adjacency matrix Ŵ is found as

Ŵ = ∆̂− L̂. (17)

IV. RESULTS

In this section, we first compare the signals obtained from graphs
based on the distance D in (3) and the proposed resistance distance
matrix R for unweighted graphs. Next, we present signals obtained
from weighted graphs as well as network reconstruction from these
signals. Finally, we show how the proposed method can be applied
to functional connectivity networks constructed from EEG to differ-
entiate between the network structures obtained from two different
experimental conditions.

A. Unweighted graphs

We first compare the signals obtained from binary ring lattice
network using the original distance measure D and the proposed
resistance-based measure. For a ring lattice network consisting of 64
vertices, the proposed method results in sinusoidal signals, similar
to the original method (Fig. 1), as expected from [5]. Based on
the resistance distance, as the number of edges, K, increases, the
amplitude of the signals decreases (Fig. 1 (a) and Fig. 1 (b)). Also,
the amplitude of components decreases as the component number
increases. In contrast, the original method does not capture the
changes in the network’s connectivity (Fig. 1 (c) and Fig. 1 (d)).
It is known that the pairwise resistance ri j decreases when edges
are added or weights are increased [17]. Hence, as K increases the
entries of the resistance distance matrix R decreases. Therefore, the
graph signal representation based on R not only provides information
about the type of network, but also yields information about its degree
distribution.

B. Results from weighted graphs

The proposed method was also assessed on a weighted stochastic
block model consisting of 150 vertices. Fig. 2 illustrates the signal
representations (first 3 and 4 components) of networks for different
connection probabilities (Fig. 2 (a) and Fig. 2 (b)) and for different
number of blocks (Fig. 2 (c) and Fig. 2 (d)). It can be seen from
these figures that the first K− 1 components directly correspond to
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Fig. 1: Signal representation of ring lattice network. Top: Resistance
distance; (a) K = 2; (b) K = 6. Bottom: Distance D; (c) K = 2; (d)
K = 6.

individual clusters, with the Kth component being an impulse. Thus,
the number of blocks in the network can be inferred by observing
its components. In addition, the amplitude of the peak is inversely
proportional to the connection probability.

Fig. 2: Signals constructed from a weighted stochastic block network.
Top: First three components corresponding to a network with K = 3
blocks, (a) p = 0.2; (b) p = 0.5. Bottom: (c) First three components
corresponding to a network with K = 3 blocks, p= 0.3; (d) First three
components corresponding to a network with K = 4 blocks, p = 0.3.

Fig. 3 shows the original and reconstructed adjacency matrices
for a stochastic block network with 3 blocks, p = 0.3, and a small-
world network, with probability of connection p = 0.5 and k = 6
nearest neighbors. Clearly, the proposed method is accurate in the
reconstruction of both the structure and weights of the network.
For 50 simulations, we computed the reconstruction error based on
the Frobenius norm of the difference between the reconstructed and
original adjacency matrices, 1

N(N−1)‖A− Â‖F . Table I shows the
reconstruction errors for both networks.

C. EEG Data from a Cognitive Control Study

The proposed measure was evaluated on an EEG data set from
a cognitive control-related error processing study. We studied the
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Fig. 3: Original and reconstructed adjacency matrices. Top: Small-
world network, (a) Original; (b) Reconstructed. Bottom: Stochastic
block network, (c) Original; (d) Reconstructed.

TABLE I: Reconstruction errors

Network Error (mean ± st.dev.)
Small-World 9.17×10−5±4.48×10−6

Stochastic Block 1.7×10−3±2.09×10−5

error-related negativity (ERN), an event potential which reaches its
maximum amplitude within 100 ms after errors are made in simple
reaction time tasks [20]. This potential has been related to increased
synchronization among the central and frontal regions in the theta
band (4−8 Hz) [21], when compared to central and parietal regions
[22]. EEG data was provided from a previously published study where
subjects performed a speeded-response flanker task [23]. In this ex-
periment subjects were required to correctly identify the target letter,
located at the center of a five-letter string. EEG activity from error
and correct responses was recorded and all epochs were processed
offline for removal of eye movement artifacts and volume conduction
correction using the Current Source Density (CSD) Toolbox [24]. A
total of nineteen subjects with error trials ranging from 20 to 61
(36.78 ± 13.72, mean ± st.dev.), were considered in this analysis
and the same number of correct responses was chosen randomly.

In order to construct functional connectivity networks, phase
synchrony between pairs of electrodes is computed for both error
and correct responses. A network for each subject was constructed
by averaging the PLV over the frequency bins corresponding to the
theta band, 4-8 Hz, and the ERN interval, 25− 75 ms. A final
network for error and correct responses was obtained by averaging
over subjects. The optimal ordering of the nodes was obtained from
the Cuthill-McKee algorithm. These networks were transformed into
signals by using (11). The magnitude of the Fourier transform of each
component for error and correct responses are shown in Fig. 4 (a)
and Fig. 4 (b), respectively. The spectrum of error responses contain
high energy for low frequencies in the first few components, and as
the component number increases this energy shifts until it reaches the
higher frequencies for the last components. On the other hand, there
is no clear trend in the spectrum corresponding to correct responses.

From this spectral information, it is possible to correlate the error
and correct responses to well-known network structures. For both
error and correct responses, we computed the spectral centroid for
each component and examined its correlation with that of a small

world network for different number of nearest neighbors K and
probability of rewiring p. Fig. 5 shows error bars obtained after
50 simulations of the small world network. Error responses are
highly correlated with a small world network, and this correlation
is inversely proportional to the number of nearest neighbors. On the
other hand, correct responses are less correlated, but still show some
small-world behavior for small number of neighbors. This is in line
with previously published work, where we showed increased small-
world characteristics for ERN compared to correct-related negativity
(CRN) [25]. Thus, this approach provides an alternative method to
characterize the network’s behavior for each cognitive condition.

Fig. 4: Fourier transform for each component. (a) Error responses;
(b) Correct responses.

Fig. 5: Correlations between the spectral centroid of cortical re-
sponses and small world network model.

V. CONCLUSION AND FUTURE WORK

In this paper, a new network to signal transformation based on
the resistance distance has been proposed for weighted networks.
The proposed method reveals structural attributes of the graphs, not
perceivable by previously proposed distance matrices. Furthermore,
the proposed method can characterize the behavior of functional con-
nectivity networks under different cognitive conditions. Future work
will focus on the processing of the network signals for applications
such as graph filtering and extensions to temporal networks.
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