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ABSTRACT

How can we decipher the hidden structure of a network based
on limited observations? This question arises in many sce-
narios ranging from social to wireless and to neural networks.
In such settings, we typically observe the nodes’ behaviors
(e.g., the time a node learns about a piece of information, or
the time a node gets infected by a disease), and we are inter-
ested in inferring the true network over which the diffusion
takes place. In this paper, we consider this problem over a
neural network where our aim is to reconstruct the connec-
tivity between neurons merely by observing their firing ac-
tivity. We develop an iterative NEUral INFerence algorithm
(NEUINF) to identify the type of effective neural connections
(i.e. excitatory/inhibitory) based on the Perceptron learning
rule. We provide theoretical bounds on the average perfor-
mance of NEUINF as well as numerical analysis to compare
the performance of the proposed approach to previous art.

Index Terms— Neural network tomography, connectome
mapping, inverse signal problems, perceptron rule

1. INTRODUCTION

Reconstruction of neuronal network connectivity has been a
major challenge for the past decades. Currently, invasive pro-
cedures are the only ”reliable” approach to map the connec-
tome. However, these approaches are prohibitively complex
and time-consuming: it took more than 10 expert/year to map
the whole connectome of C. Elegans, comprising only 302
neurons and a few thousands synaptic connections [1]. To
map the whole brain of fruit flies, with around 10, 000 neu-
rons, we would have to spend around 4700 expert/year [2, 3].
Following the same approach and using current technology,
it is estimated that it will take around 14 billion man/year to
completely map the human brain’s connectome [2]. Although
there is an increasing effort to make some parts of the invasive
procedures automated, such approaches remain impractical
for mid-sized/large networks. Furthermore, the current inva-
sive techniques cannot be applied to live animals/humans, as
it involves dissecting the brain.

As a result, inverse methods with the focus on mapping
the (whole or partial) connectome from the activity of the neu-
rons are compelling (or perhaps the only viable) alternatives.
They can be applied to live specimen and potentially require
much less time and labor. Furthermore, rapid advancements

in recording technologies has made it possible to simultane-
ously monitor the activities of tens [4] to hundreds of neu-
rons [5], [6] (for a good review, see [7]). Upcoming technolo-
gies will increase this number significantly in near future [8].
These advancements will soon provide us with abundant neu-
ral data that can be used by inference algorithms to inversely
map neural connectomes.

In this paper, we propose such an inverse approach for
identifying the type of (effective) connections between neu-
rons that reflects their causal relationship. More precisely, we
consider a neural network where neurons follow the standard
Leaky Integrate-and-Fire (LIF) model [9] and connections are
associated with random delays. We propose an iterative NEU-
ral INFerence algorithm NEUINF to identify both the effective
connections and their types (i.e., excitatory/inhibitory). We
provide some theoretical estimates on the performance of the
algorithm. Furthermore, through numerical simulations we
validate the results and see how they compare to the previous
state of the art.

2. RELATED WORK

Identifying neural connections from a set of recorded neural
activities is an instance of network tomography [10] and has
been extensively studied in the past Cross Correlogram (CC)
is perhaps the most widely-used method to identify (func-
tional) connection between a pair of neurons [7]. However,
approaches based on CC usually fall short of identifying
causal relation or effective connectivity of neurons.

Another very popular approach to identify effective con-
nectivities is Generalized Linear Models (GLMs) [11]. Meth-
ods based on GLM essentially take the effects of stimulus,
self-history of the neurons, and contribution of other neu-
rons into account and calculate the filters through which all
these factors affect the firing response of each neuron. GLM
was recently used in reconstructing a real physiological cir-
cuit from recorded neural data [12]. The approaches based on
GLMs are provably accurate (i.e. they identify the correct set
of connections in the underlying graph) if the neural model
used to generate spike data matches the one used in GLM.
Otherwise, the final estimation will have some bias and vari-
ance from the correct results [13]. Furthermore, traditional
GLM approaches require high computational cost. To this
end, recently, approximation methods have been suggested
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to resolve this issue [13], [14]. Nevertheless, the convergence
still only applies when the model for neurons and that of GLM
closely match each other.

Bayesian approaches are also widely used. In [15], a
Maximum a Posteriori (MAP) approach is applied to solve the
problem of connection identification, with accurate results in
the regime of limited data at the expense of prohibitive com-
putational costs.

Recently, another line of work has focused on the con-
nection mapping problem that are mostly tailored to LIF neu-
rons. In particular, Bussel et al. [16] addresses the problem
by converting the non-linear firing behavior of LIF neurons
into a set of linear equations, which can be solved given a
sufficient number of recorded samples. While being efficient,
this algorithm is highly sensitive to the accuracy of spike time
and heavily relies on the knowledge of model parameters, e.g.
synaptic delays, which are very difficult to obtain. Addition-
ally, Memmesheimer et al. [17] proposed an inference algo-
rithm based on the Perceptron learning rule, similar to Bal-
dassi et al. [18], for which they proved that under accurate
spike times it identifies a simple n-to-1 feed forward network.
They also proposed a heuristic extension that works with finite
precision in recorded spike times. Nevertheless, their model
does not take into account (random) synaptic delays.

Finally, we should mention that the consistency problem
even for a n-to-1 feed forward network is NP-hard. In words,
determining whether or not there exists a set of delays and
weights such that we can fully match the set of input firing
patterns to the output is very difficult [19]. Although this re-
sult does not necessarily mean finding such a configuration is
impossible, it shows that finding provable ”positive learning
results” for the case of spiking neuron is quite difficult.

Our proposed approach NEUINF in this paper is similar to
GLMs, namely, it does not rely on the knowledge of propa-
gation delays. However, it differs in terms of the iterative al-
gorithm and the provided theoretical analysis as it only relies
on very general assumptions about the nature of connections.
Furthermore, while the algorithm update rule is inspired by
the Perceptron learning rule, it differs from previous similar
approaches as the effect of propagation delays are considered
in NEUINF.

3. MODEL AND PROBLEM STATEMENT

As mentioned earlier, in this paper we consider a Leaky
Integrate-and-Fire (LIF) model for the neurons [9]. In this
model, each neuron accumulates the incoming (weighted)
spikes from all of its neighbors and fires if the net sum ex-
ceeds a threshold θ. Otherwise, the membrane voltage decays
exponentially fast.

As for the graph, we assume that there are two types of
connections: excitatory and inhibitory. In accordance with
biological neuronal networks, we assume that the excitatory
connections are more numerous than the inhibitory ones.
Furthermore, we assume that the weight of connections is
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Fig. 1: Network model: a recurrent neural network where we
try to identify the incoming connections of node b by observ-
ing the spike trains x1(t), . . . , x5(t) and y(t).

fixed and to keep the network balanced, we require for the
inhibitory connections to have a larger weight (in magnitude)
than excitatory ones. We typically set the weight of an excita-
tory connection to +1mV and that of an inhibitory connection
to −δmV, where δ = nexc/ninh, and nexc and ninh are the
number of excitatory and inhibitory neurons, respectively.
Following Dale’s principle [20], we assume that all outgoing
connections of a neuron have the same type, i.e., they are all
either excitatory or inhibitory.

We also assume that neural connections have intrinsic de-
lays which represent the time it takes for the information to
propagate through the axons and synapses. The delay for
each link is assumed to be a random number in the interval
[0, dmax], where dmax > 0 is the maximum delay. The delays
do not change and once assigned, remains fixed. Figure 1 il-
lustrates the model used to generate data in the simplest case
considered in this paper.

The goal of this paper is to infer the underlying connec-
tivity by only observing the spike trains. In this paper, we are
only interested in identifying the synaptic connections among
the neurons for which we have recorded spike trains. Identi-
fying the connections to hidden neurons is outside the scope
of this paper and still remains one of the major challenges in
connection mapping from spikes.1 We propose an algorithm
called NEUINF that iteratively identifies the connections by
producing an analogue association matrix which reflects the
accumulated belief of each connection. This matrix can then
be transformed into a ternary adjacency matrix to infer the
type of connections: void (no connection), excitatory, or in-
hibitory.

4. RECONSTRUCTION ALGORITHM: NEUINF

In order to identify the connections, we can consider each
post-synaptic neuron separately and find its incoming con-
nections. Let xi(t) and y(t) denote the firing state of the
i-th pre-synaptic and the post-synaptic neuron at time t. For
the ease of presentation, let us assume momentarily that the
firing state of the post-synaptic neuron at time t depends only

1Note that we still consider the effect of hidden neurons through a ran-
dom ”outside traffic” affecting the states of neurons in the network.
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on the states of its neighbors at time t. Thus, we effectively
ignore the propagation delay and the integration procedure.
Our goal is to find a set of weights W such that the average
quadratic error E over a recording period T is minimized:

min
W

E = min
W

1

T

T∑
t=1

∣∣∣∣∣f
(

n∑
i=1

Wixi(t)− θ

)
− y(t)

∣∣∣∣∣
2

. (1)

Here, Wi is our belief about the connection weight from the
i-th pre-synaptic to the post-synaptic neuron and f(.) is the
Heaviside step function (or its continuous approximation).
By taking the derivative, we obtain

∇E =
2

T

T∑
t=1

(f (〈W,Xt〉 − θ)− y(t)) f ′ (〈W,Xt〉 − θ)X>t ,

(2)
where Xt = (x1(t), . . . , xn(t)) is the state of pre-synaptic
neurons at time t. Now, we can iteratively update our beliefs
about W according to the following update rule:

W (τ + 1) = W (τ)− ατ∇E(τ), (3)

where ατ > 0 is a small number representing the learning
rate. The above update rule follows the standard gradient
descent approach. However, a closer look at (2) reveals some
interesting characteristics: the weight Wi, will be updated
(for a given t) if both of the following conditions are satis-
fied: 1) xi(t) = 1, and 2) f (〈W (τ), Xt〉 − θ) 6= y(t). In
words, we update the weight Wi in round τ if and only if
the pre-synaptic neuron i fires and W (τ) does not correctly
predict the state y(t) of the post-synaptic neuron. Note that
these two conditions are in fact reminiscent of the well-known
Perceptron learning rule in neural networks [21].

Equipped with these observations, we propose NEUINF,
as defined in Algorithm 1, that does not use the derivative of
function f(.) and takes into account both the unknown prop-
agation delays and the neural integration procedure. Since
we do not know the synaptic delays, we define an integration
window ∆ such that only the firings during this window are
considered for the updates.

Algorithm 1 is deterministic. In practice, we found that
a stochastic version, called STOCHASTIC NEUINF, works
much better. The only difference is in the weight update rule.
In each iteration τ , the stochastic version updates the weights
∆Wi 6= 0 with some probability β independently at random.
In the deterministic version, β = 1.

In order to analyze the performance of NEUINF we make
the following mild assumptions:

(A1) The probability of firing for a (pre-synaptic) neuron
does not depend on it being excitatory or inhibitory.

(A2) Excitatory (inhibitory) connections increase (resp. de-
crease) the probability of the post-synaptic neuron to
fire.

Algorithm 1 NEUINF

Input: The observations {xi(t)} and {y(t)} over period T , a
maximum number of iterations τmax.

Output: Connections Belief Matrix W
Initialize W (0) = (0, . . . , 0)1×n
for τ = 1→ τmax do

for t = 1, . . . , T do
set vi(t) =

∑t
ti=t−∆ xi(t), ∀i

set ŷ(t) = f (
∑
iWi(t)vi(t)− θ)

if ŷ(t) 6= y(t) then
∆W = (ŷ(t)− y(t))V Tt
Break

end if
end for
Update: W (τ + 1) = W (τ)− ατ∆W

end for

With the above assumptions we can prove that NEUINF pro-
vides the desired ordering for the average values of differ-
ent connection types, i.e., it returns higher values for exci-
tatory connections than inhibitory or non-existent (void) con-
nections. Note that we obtain this guarantee under the general
(and somehow trivial) assumptions A1 and A2. Therefore,
our result can be applied to a wide range of scenarios. We
can have tighter guarantees (namely, with high probability,
etc) if we make more strict assumptions about the type of the
neurons and statistical properties for the firing patterns (as in
the case of GLM) or the structure of underlying graph (e.g.,
random or small-world graphs).

Theorem 1. Under the assumptions A1 and A2, and for a
sufficiently small learning step ατ , NEUINF outputs

w̄exc ≥ w̄void ≥ w̄inh,

where w̄exc w̄void and w̄inh denote the expected values re-
turned by NEUINF for excitatory, void, and inhibitory con-
nections, respectively. Here, the expectation is taken over the
randomness of pre-synaptic spike patterns.

The proof of the theorem is provided in the longer version
of this paper [22]. To give the reader an intuition, we use in-
duction to show that the correct ordering for the average value
of our beliefs about the type of synaptic connections is pre-
served in each iteration of the inference algorithm NEUINF.

5. NUMERICAL EXPERIMENTS

We generated several Erdos-Renyi directed random graphs
with a connection probability p. In accordance with real bio-
logical networks, we assume that the probability of a connec-
tion being excitatory p+ is five times more than that of being
inhibitory p−. We set the firing threshold to θ = 5mV and
the maximum delay to dmax = 10ms. Further, we assume
that neurons have a refractory period of 1ms and the mem-
brane potential is reset after a spike. We also consider the
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Fig. 2: Effect of recording duration T on beliefs returned by
STOCHASTIC NEUINF for a recurrent network of 60 neurons.

”outside” traffic, which are the incoming spikes from neu-
rons whose activities are not recorded. This traffic is modeled
as a random process that sets each recorded neuron to fire
with some probability q independent of the activity of other
recorded neurons2. Once the data is generated, we compare
the performance of NEUINF with Cross Correlogram (CC)
and GLM. For GLM, we use the code provided in [11]3 and
modified it to serve our setup. We use the K-Means algorithm
(with K = 3) to transform the analog association matrix into
the digital adjacency matrix.

We evaluate the performance of the considered algorithms
according to the following criteria: 1) The average values of
the association matrix for the excitatory/void/inhibitory con-
nections, 2) The precision and recall of the algorithm over the
ternary adjacency matrix.

Numerical Results: We only report the results for the
more general case of recurrent networks. Results for the feed-
forward topology is available in the longer version [22]. Con-
cretely, we consider a network of n = 60 neurons, 50 excita-
tory and 10 inhibitory, with a connection probability of 0.2.

Figure 2 illustrates the effect of the observation period T
on the average value of beliefs returned by the considered al-
gorithms. Desirably, STOCHASTIC NEUINF outputs an asso-
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Fig. 3: Belief gaps

2The data/code is available at http://rr.epfl.ch/KSV2015
3The code is available at http://pillowlab.princeton.edu
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Fig. 4: Performance comparison after ”ternarification”

ciation matrix with the desired ordering, i.e. higher values for
excitatory connections and lower values for inhibitory ones.
Figure 3 shows the gap between the beliefs for each pair of
connection types (i.e., between excitatory and ”void” as well
as ”void” and inhibitory). Clearly, STOCHASTIC NEUINF
outperforms the others.

The precision and recall of different approaches, after
”ternarification” using the K-Means algorithm, is shown in
Figure 4. In identifying excitatory and ”void” connections,
STOCHASTIC NEUINF outperforms both CC and GLM. Fur-
ther, the seemingly good performance of CC in identifying
inhibitory connections comes at the expense of low precision.
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Fig. 5: The gap between beliefs of STOCHASTIC NEUINF

We also observe that sparsity, both in the firing patterns
and network topology, improves the performance. Figure 5
illustrates the performance of STOCHASTIC NEUINF in dif-
ferentiating connection types in feed-forward/recurrent net-
works for different values of connection probability p, and
probability of being triggered by outside traffic, q.
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