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ABSTRACT 
 
Compressed sensing has shown great potential in reducing 
data acquisition time in magnetic resonance imaging (MRI). 
Recently, a spread spectrum compressed sensing MRI 
method modulates an image with a quadratic phase. It 
performs better than the conventional compressed sensing 
MRI with variable density sampling, since the coherence 
between the sensing and sparsity bases are reduced. 
However, spread spectrum in that method is implemented 
via a shim coil which limits its modulation intensity and is 
not convenient to operate. In this letter, we propose to apply 
chirp (linear frequency-swept) radio frequency pulses to 
easily control the spread spectrum. To accelerate the image 
reconstruction, an alternating direction method of 
multipliers (ADMM) algorithm is modified by exploiting 
the complex orthogonality of the quadratic phase encoding. 
Reconstruction on the acquired data demonstrates that more 
image features are preserved using the proposed approach 
than those of conventional compressed sensing MRI. 
 

Index Terms— Compressed sensing, magnetic 
resonance imaging, spread spectrum, fast reconstruction. 
 

1.  INTRODUCTION 
 

Magnetic resonance imaging (MRI) is widely applied in 
clinical diagnosis. Reducing data acquisition time is 
important for MRI since slow imaging speed leads to 
artifacts in images [1]. Assuming the image can be sparsely 
represented with a sparsity base, compressed sensing has 
shown promising results to accelerate the MRI [2]. Recently, 
a spread spectrum method outperforms conventional 
compressed sensing MRI (CS-MRI) with the variable 
density sampling, which is considered as the state-of-art 
sampling for a single image [3]. However, this spread 
spectrum achieved by quadratic phase modulation is 
implemented via a second order shim coil. Its 
implementation limits the modulation intensity and is not 
convenient to operate. In this letter, we introduce a chirp 
(linear frequency-swept) radio frequency (RF) pulses-based 

phase modulation [4, 5] into spread spectrum CS-MRI to 
simplify the measurement scheme. The modulation intensity 
is easily controlled by choosing a bandwidth of the chirp RF 
pulses. Observing that the complex orthogonality of the 
quadratic phase encoding matrix, a fast numerical algorithm 
is modified to reconstruct the image from undersampled 
data. 
 

2.  SPECTRUM COMPRESSED SENSING MRI 
 

2.1 Reduce the coherence using spread spectrum 

Let N∈ρ   denote an image, the data acquisition model 

for CS-MRI [2] is 
= +s UFρ η ,                              (1) 

where M∈s   is the acquired data, M∈η   is the noise, 
N N×∈F  is a Fourier basis matrix,  and M N×∈U   is an 

undersampling operator. A typical CS-MRI reconstruction 
attempts to solve 
 

1 2
ˆ arg min . .s t ε= − ≤

α
α α s UFΨα ,     (2) 

where Ψ  is a dictionary and ε  stands for the noise level in 
the k-space data. The reconstructed image is ˆ ˆ=ρ Ψα . 

According to the compressed sensing theory [6], the 
solution α̂  is obtained if the number of measurements 
satisfies  

( )2 , logM C S Nμ≥ UF Ψ ,             (3) 

where C  is a constant, μ denotes the mutual coherence 

between encoding matrix UF  and dictionary Ψ , and S  is 
the number of nonzero entries in α . Reducing the 
coherence μ  will reduce the image reconstruction error [3] 

although satisfying theoretical sufficient conditions for CS-
MRI is hard [7]. Spread spectrum [3] was introduced into 
CS-MRI by modulating a quadratic phase N N×∈Φ   on 
image ρ . N N×∈Φ   is a diagonal matrix with the diagonal 

entry ( ) 2
niar

nr eφ =  where nr  is the spatial location of thn  

voxel in the phase encoding direction and a is a constant. 
The data acquisition model becomes 
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 = +s UFΦρ η .                    (4) 

Compared with conventional CS-MRI [2], lower 
reconstruction error is achieved using spread spectrum [3]. 
The theoretical explanation is that the coherence 

( ),μ UFΦ Ψ  of spread spectrum is smaller than 

( ),μ UF Ψ of conventional CS-MRI. 

2.2 Limitation of shim coil-based spread spectrum 

In the original spread spectrum MRI  [3], the quadratic 
phase modulation on magnetizations was achieved by the 
second-order shim coils. Limitations of this scheme will be 
illustrated in this section. 

Giving a gradient with linear spatial distribution 

( ) 0 1G r G G r= +  acting over a temporal duration 0T , the 

phase variation satisfies 

 ( ) ( )
0

2
0 0 1 0

0 0 2

T r

r G r dr dt G T r G T r
γφ γ γ′ ′Δ = = +  ,     (5) 

where γ  is the gyromagnetic ratio, and r is the spatial 

location along the direction of the gradient. The quadratic 
phase modulation intensity is dominated by 1 0G T .  

However, the maximum magnitude of the shimming 
gradient is much lower than that of the imaging gradient, 
thus the spread spectrum effect provided by the original 
scheme will be limited since the modulation intensity is 
proportional to the curvature of the parabolic phase 
distribution [4, 5].  

Using RF pulses is suggested as future work to simplify 
the measurement scheme of spread spectrum [3]. Recently, 
using chirp (linear frequency-swept) pulses shows the 
ability to more conveniently produce a much larger 
quadratic phase modulation [4, 5]. This method is immune 
to field inhomogeneity and thus works better than single-
shot echo planar imaging.  

   
3.  PROPOSED METHOD 

 
We propose to apply chirp RF pulses in spread spectrum 
CS-MRI in this Section.  

3.1 Spread spectrum CS-MRI using chirp RF pulses 

The designed sequence is shown in Fig. 1. It is a variant 
of the conventional multi-scan spin-echo sequence [4, 5]. A 
main difference is that the common sinc pulse for excitation 
is replaced by a π/2 chirp pulse.  

The chirp pulse has a linear frequency modulation as 

enco 0 enco( )RF t O Rtω = + ,                      (6) 

where R and 0O  are the chirp rate and the initial frequency 

of the pulse, respectively. Bandwidth of this pulse is defined 
as encoO RTΔ = [4, 5] for an excitation duration encoT .  For a  

 

 
 
field of view with length YL  in the phase encoding 

direction, relationship between encoG  and OΔ  should satisfy 

 enco YO G LγΔ = ,                   (7) 

since all the spins in the field of view are excited. 
In the excitation stage, a phase variation introduced by the 

chirp pulse at time instance encot  is 

 
enco

RF enco 00
( ) ( )

t
t O R dϕ τ τ= + .            (8) 

At the end of the excitation duration encoT , a phase 

variation introduced by encoding gradient encoG  is 

 
enco encoG enco enco enco( ) ( )( )Gt y T tϕ ω= − .    (9) 

where y  is the spatial location in phase encoding direction.  

At the end of encoding, the overall phase profile becomes 

 ( ) ( )
encoenco RF enco G enco( )

2
y t t

πϕ ϕ ϕ= − + .  (10) 

This profile is further derived as 

( ) 2enco enco
enco enco enco enco enco Y

Y

1 1

2 2 8 2

G T
y y G T y G T L

L

γ πϕ γ γ= − + − −   (11) 

by substituting 
 

enco RF enco( ) ( )G y tω ω= ,          (12) 

which means magnetization at the location satisfying Eq. 
(12) will flip from the Z-axis onto the X-Y plane at instance 

encot , and assuming 

 
0 enco

1

2 YO G Lγ= − ,                  (13) 

which means the chirp pulse is symmetrically and 
incrementally swept [4, 5].  

In the undersampling scheme, the phase variation 
generated by decoding gradient is 

 ( )deco deco decot n g t yϕ γ= − Δ ,   (14) 

where decogΔ  is the incremental magnitude of the decoding 

gradient between two successive scans, decot  is the duration 

of the gradient, and n  is the index of the scanning cycle 

chosen from [ ]1, N . N  is the required number of total 

scanning cycles for Nyquist sampling theorem using direct 
Fourier decoding, which satisfies 

 
Fig.1. Pulse sequence for chirp RF pulses-based spread spectrum MRI.
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enco enco

deco deco

G T
N

g t
=

Δ
.                     (15) 

   The total phase distribution for the pulses is 

( ) 2enco enco
enco2

YY

1
,

8 22

O T O Tm
y m y y O T

N LL

πφ Δ ⋅ Δ ⋅
= − + ⋅ − Δ ⋅ − .  (16) 

where 
2

N
m n= − . Eq. (16) is derived by adding Eq. (11) 

and Eq. (14), and substituting Eq. (7).  
Overall, the acquired signal for the sequence is 

 ( ) ( ) ( ) ( ) ( )
Y Y

,

0 0

m

L L
i y m ik ys m y e dy y e y dyφρ ρ φ−= =  ,    (17) 

where enco

Y
m

O Tm
k

N L

Δ ⋅
= −  and 

( )
2enco

enco2
Y

1

8 22

O T
i y O T

Ly e

π

φ
 Δ ⋅

− + Δ ⋅ + 
  = . 

By discretizing y  as Y
n

L
y n y n

N
= Δ =  and scaling ( )s m  

with an appropriate factor, a discrete form of the data 
acquisition model in Eq. (17) is 

 =s UFΦρ ,           (18) 

where N N×∈Φ   is a diagonal matrix whose diagonal entry 
is 

 
2enco

enco2

1

8 22
,

O T
i n O T

N
n n e

πΔ ⋅ − + Δ ⋅ + 
 =Φ . (19) 

Φ  stands for the quadratic phase modulated on an image. 

Multiplying Φ with ρ corresponds to a convolution that 

generically spreads the spectrum of ρ [3].  

Here, the modulation intensity is defined as 

encoO T
h

N

Δ ⋅
= ,                             (20) 

since the phase modulation can be easily controlled by 
setting the value of encoO TΔ ⋅  for a fixed N . As shown in 

Fig. 2, the energy of k-space data is more widely spread out 
along the phase encoding direction for a higher OΔ . The 
spread k-space data has the benefit to reduce the 
reconstruction error [3]. 

3.2 Fast image reconstruction algorithm 

When the data y  is undersampled, which means M N<  , 

the Eq. (18) is underdetermined and reconstructing image is 
an ill-posed problem. For the randomly undersampled data, 
the compressed sensing MRI [2] is adopted to reconstruct 
the image 

 
2

12
ˆ arg min

2
Hλ = − + 

 ρ
ρ s UFΦρ Ψ ρ , (21) 

where λ  trades data consistency with sparsity using 

transform HΨ .   
We adopt the alternating direction method of multipliers 

(ADMM) [8]  to solve Eq. (21) because ADMM enables  

 
 
fast computation in CS-MRI. The difference between spread 
spectrum MRI and conventional CS-MRI is the presence of 

Φ . We observe that Φ  satisfies complex orthogonality 
thus the ADMM can make use of the special property of 
matrix to enable fast image reconstruction in spread 
spectrum MRI. 

Proof:  Φ  is a diagonal matrix with diagonal entry 
2enco

enco2

1

8 22
,

O T
i n O T

N
n n e

πΔ ⋅ − + Δ ⋅ + 
 =Φ . The Hermitian transpose of Φ  

is also a diagonal matrix with diagonal entry 
2enco

enco2

1

8 22
,

O T
i n O T

H N
n n e

πΔ ⋅ + Δ ⋅ + 
 =Φ . Therefore, H =ΦΦ I   since the 

diagonal entries of HΦΦ  satisfy , , 1H
n n n n =Φ Φ  .  

According to the ADMM [8], an augmented Lagrangian 
form to solve Eq. (21) is  

 ( ) 2 2

1 22, ,
min , , ( )

2 2
H H HQ

λ β= + − − + −
α ρ v

α ρ v UFΦρ - s α v α Ψ ρ α Ψ ρ .  (22) 

where v  and α  have the same dimension as HΨ ρ  and β  

is a positive constant.  
Eq. (22) is solved in an alternating fashion [8], which 

means three sub problems, estimating v ,α  and ρ , will be 

solved alternatively until the solution converges. In the thg  

iteration, solving v  and α  are the same as those were done 
in [8] and the derivations of solving them are omitted here. 

To demonstrate that complex orthogonality of Φ  enables 
fast computations, the following discussions focus on the 
derivation of solving ρ  when α  and v  are fixed.  

When α  and v  are given, the solution of 

( ) 2 2

, 22
min ( )

2 2
H H HQ

λ β= − − + −α vρ
ρ UFΦρ - s v α Ψ ρ α Ψ ρ   (23) 

is the solution of a least square problem 
 ( ) ( )H H H H H H Hβ β λ+ = − +ΨΨ Φ F U UFΦ ρ Ψ α v Φ F U s   .     (24) 

In the implementation, HΨ and Ψ  denote the forward 
and inverse shift-invariant discrete wavelet transforms and 
they satisfy H =ΨΨ I . We adopt this wavelet transform 
since it can mitigate blocky artifacts introduced by 
orthogonal discrete wavelet in magnetic resonance image 
reconstruction [9]. The forward transform improves the 

 
Fig. 2. Intensity of k-space for onion data at different chirp pulse 
bandwidth ∆O. (a) magnitude image, (b)-(e) are the intensity of k-space 
when ∆O are 0kHz (h=0), 32kHz (h=0.125), 64kHz (h=0.25) and 256kHz
(h=1), respectively. Note: N=256 and Tenco=4ms.  
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shift-invariance by averaging over all possible shifts at 
computational cost ( )logO N N   for N-sample signals [10]. 

   Since H =ΦΦ I   and H =FF I , multiplying FΦ  on the 
left and right sides of Eq.(24) obtains 

( ) ( )H Hβ β λ+ = − +I U U FΦρ FΦΨ α v U s  ,       (25) 

where HU U  is a diagonal matrix with entries 0 or 1.  
The left side of Eq. (25) is invertible since 0β > , thus 

( ) ( )( )1H H H Hβ β λ
−

= + − +ρ Φ F I U U FΦΨ α v U s  .   (26) 

Similar to the algorithm developed in [8], solving ρ  only 

involves matrix-vector multiplications, fast Fourier 
transform and a fast sparsifying transform.  

 
4. EXPERIMENTS AND RESULTS 

 
In experiments, the full phase decoding number N=256 and 
the excitation duration Tenco=4ms. The field-of-view along 
Y-axis is LY=80mm. The repetition time is 1s and the echo 
time is 20ms. The acquisition rate is 50kHz. The acquired k-
space data are shown in Figs. 3(a) and (b), which are 
undersampled in simulation according to the sampling 
pattern in Fig. 3(c). Simulations were run on a dual-core 2.2 
GHz CPU laptop with 3GB of RAM. Computation time of 
image reconstruction is 8s. 

To evaluate the reconstruction, we use the relative l2  

norm error (RLNE) [9] defined as   

2 2
ˆ ˆ( ) /e = −ρ ρ ρ ρ                      (27) 

to measure the difference between the reconstructed image 
ρ̂  and the fully sampled image ρ . The ρ  was obtained by 

removing the phase modulation Φ  from Φρ . A lower error 

implies that the reconstructed image is more consistent to 
the fully sampled image. 
   Less image features are lost in reconstruction (Fig. 3(f)) 
using the RF-based spread spectrum than those of using 
conventional imaging method [2] excluding spread 
spectrum (Fig. 3(i)). As shown in Fig. 4, when the 
modulation densities h are {0.125, 0.25, 0.50}, which 
corresponds to ∆O={32, 64, 128} kHz, lower reconstruction 
error is achieved using the proposed method. This 
observation is in accordance to that the spread spectrum 
MRI [3] obtains lower reconstruction error when the 
modulation densities lies in range of [0.09,0.30] . 

 
5. CONCLUSIONS 

 
A spread spectrum compressed sensing MRI using chirp 
radio frequency pulses is proposed. Connection between the 
designed pulse sequence and quadratic phase modulation is 
mathematically illustrated. The proposed method controls 
the intensity of spread spectrum more easily by setting chirp 
pulses bandwidth. Basing on the observation that quadratic 
phase modulation matrix satisfies complex orthogonality, an  

 
 
alternating direction method is modified to fast solve the 
reconstruction problem in 8s. Reconstruction on the 
acquired data demonstrates that more image features are 
preserved using the proposed approach than those of 
conventional CS-MRI. Verification on in vivo data and 
image reconstruction using fast adaptive sparse 
representation [9, 11, 12, 13] and very few parameters in 
numerical solvers in projected FISTA [14] are expected in 
the future. 
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Fig. 3. Reconstructed images for lemon data. (a) and (b) are intensities of
fully sampled k-space when ∆O is 0kHz (h=0) and 64kHz (h=0.25); (c) is the 
sampling pattern where the white pixel indicating the k-space data are 
sampled; (d) and (e) are reconstructed image of fully and 40% sampled data 
when ∆O= 0kHz; (g) and (h) are reconstructed image of fully and 40% 
sampled data when ∆O= 64kHz; (f) and (i) are the reconstruction error using 
undersampled data when ∆O is 0kHz and 64kHz. RLNEs for (e) and (h) are 
0.082 and 0.069. Note: (e) and (f) are the reconstructed image and 
reconstruction error with conventional CS-MRI, respectively. 
 

 
Fig. 4. Reconstruction errors at different modulation densities.
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