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ABSTRACT

Imaging of physiological functions using magnetic resonance
imaging is limited due its slow data acquisition speed. Previ-
ously various techniques based on data sharing in the spatio-
temporal k-space or sparse recovery methods have been pro-
posed to increase imaging speeds in dynamic MRI. This pa-
per presents a novel formulation for fast dynamic MRI which
combines the generic linear dynamical system based spatio-
temporal model with sparse recovery techniques. Specifically,
the formulation uses a known prior time-evolution model for
the physiological function implicitly and enforces the model
errors (innovations) to be sparse. The preliminary results of
dynamic MRI recovery experiments on an in-vivo myocardial
perfusion dataset show that the proposed approach preserves
details like edges and fine structures in recovered images better
than previous k-space data-sharing and sparse recovery tech-
niques individually.

Index Terms— MRI, Linear Dynamical System, Com-
pressed Sensing, Sparse Innovations

1. INTRODUCTION

Magnetic resonance imaging is a slow imaging modality and
many research studies over the past two decades have focused
on improving its imaging speed. Many of the these studies
are motivated by the emerging medical diagnostic procedures
which rely on detailed characterization of physiological func-
tions of critical organs such as cardiac and brain [1, 2]. The
early studies (late 90s and early 2000s) were based on exploit-
ing the redundancy in the raw data space (spatial Fourier a.k.a
k-space) in either the spatial dimension or the temporal dimen-
sion or both [3, 4, 5, 6, 7]. More recent studies (after 2006) are
based on the theory of compressed sensing (CS) which relies
on recovering a transform of the underlying image in a basis
where its representation is sparse and which exhibits high inco-
herency with the k-space sampling basis [8, 9, 10, 11, 12]. CS-
based techniques for dynamic MR applications enforce spar-
sity in the spatial dimension or/and in the temporal dimension.
Clearly, the techniques based on using sparsity priors in a sin-
gle dimension are sub-optimal as the inherent redundancy in
the complimentary dimension is unaccounted for. For other
techniques, the sparsity priors in both dimensions are weakly
coupled by the Lagrange constants used in the selected non-
linear optimization problem. On the other hand, all physiolog-
ical processes can be modeled using linear or non-linear evo-
lution models. In these models the spatial and temporal re-

dundancy is inherently coupled. Therefore, a sparse recovery
formulation based on these evolution models for physiological
functions should lead to recovered images with higher fidelity
than previous techniques relying on single or weakly-coupled
sparsity priors. In this paper, a linear dynamical system based
evolution model is combined with sparse recovery techniques
to increase the speeds in dynamic MRI applications.

Few studies in recent past have focused on combining the
linear dynamical state estimation model with the sparse approx-
imation methods. In [13], authors assume the states of the dy-
namical system to be sparse and separate the state estimation
problem into two sub-problems of support and value estima-
tion. Authors in [13] propose a CS-based ad-hoc Kalman fil-
tering solution, where CS is used to estimate the support and
the Kalman filter is run on the estimated support to track the
states. Similarly, in [14] authors assume sparse states along
with a zero-mean additive white Gaussian distribution for the
state modeling noise. Their solution is based on adding a group-
sparsity constraint to the established Kalman smoothing formu-
lation. The added constraint (group-LASSO) forces groups of
coefficients along the temporal dimension to zero. The afore-
mentioned techniques assume the following: 1) the states are
sparse and, 2) the state transition matrix for changing support
of state vectors are always known. These two requirements are
not necessarily true for dynamic MR applications where the un-
derlying images represent the unknown states.

This paper presents a novel formulation for fast dynamic
MR applications based on linear dynamical system (LDS)
model. LDS models have been used previously to model var-
ious physiological processes such as: 1) blood flow in MR
angiography and perfusion studies and, 2) periodic motion in
cardiac and abdominal imaging [15, 16]. Thus, LDS mod-
els are generic and exhibit a wide applicability for modeling
various dynamic MR applications. In the proposed formula-
tion, similar to [13, 14], the underlying dynamic images are
modeled as hidden states and the under-sampled k-space as
the observed variables. However, unlike previous techniques
the system innovations are assumed to be sparse instead of the
states themselves, i.e., it is the error in state evolution model
which is assumed to be sparse. The proposed formulation
makes no assumptions about the underlying images like pre-
vious techniques [13, 14], however it requires knowledge of
a time-evolution model for the underlying function. In future
work, learning/adapting of this time evolution will also be in-
vestigated upon. This time-evolution model inherently encodes
for data redundancies in both spatial- and temporal-space as
opposed to techniques which explicitly account for these re-
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dundancies [7]. For example, the highly constrained back
projection (HYPR) method of [7] enforces spatio-temporal re-
dundancy by explicitly sharing high-frequency details between
neighboring time-frames and oversampling the low-frequency
information for each frame to capture the contrast information.
The HYPR technique recovers sparse MR angiographic images
at high acceleration factors ∼ 25, however for not-so-sparse
images gains of 4 only, have been reported. The preliminary
results of dynamic MRI recovery experiments on an in-vivo
myocardial perfusion dataset show that the proposed approach
preserves details like edges and fine structures in recovered
images better than a spatial-sparsity based CS-technique [9]
and the HYPR technique [7] at all accelerations.

The rest of this paper is organized as follows. Section 2
presents a mathematical treatment of the linear dynamical sys-
tem based fast dynamic MRI method. Section 3 summarizes the
experimental results on an in-vivo myocardial perfusion data
set. Finally, section 4 concludes the paper.

2. PROPOSED MODEL

This section presents a mathematical formulation for the pro-
posed linear dynamical system based dynamic MRI model. Let
xk represent theNx1 MR image acquired at kth time-point for
a physiological function. The dynamic MR imaging process in
terms of the linear dynamical system is

xk+1 =Ak xk + uk (1a)
yk =Hk xk + vk (1b)

where, Ak is the NxN state transition matrix, uk is the in-
novation, yk is the acquired k-space data, Hk is the MxN
under-sampling matrix (M � N ) and vk is the sampling noise.
In this work, following assumptions are made: 1) the state
transition matrices Ak’s are known and, 2) the noise uk is
sparse. These assumptions are true for various physiological
functions. For example, in MR angiography and perfusion,
within the imaged Field-of-View (FOV) the anatomical bound-
aries do not change over time but only the image-contrast varies
over time. Thus, for angiography, Ak is the identity transform
and the sparse innovations uk models the contrast changes be-
tween time-points if any. For cardiac CINE studies, the state
transition equation (1a) can be replaced with a 2nd order auto-
regressive model while still modeling the system innovations
uk as sparse. Sampling noise vk is in the complex space and is
assumed to beN (0,Rk), where Rk is the covariance matrix.

An extensively studied case of the system (1) is the Kalman
filter which assumes Gaussian statistics on both the sampling
noise vk and the system innovations uk ∼ N (0,Qk). The
corresponding fixed-interval Kalman updater solves for the fol-
lowing problem

min
x1,...,xk

k∑
i=1

τi ‖ xi −Ai−1xi−1‖22 +
k∑

i=1

λi ‖ Hixi − yi ‖22

(2)
where, {τi}ki=1 and {λi}ki=1 are the weight factors for the
system innovations and sampling-noise models. Similarly, the

fixed-interval solution for problem (1) with sparse uk is

min
x1,...,xk

k∑
i=1

τi ‖ xi −Ai−1xi−1‖1 +
k∑

i=1

λi ‖ Hixi − yi ‖22

(3)
To solve (3), we can solve for {ûi}ki=1 and then use them

to estimate {x̂i}ki=1 explicitly using (1a). Similar solution
was previously proposed in [17]. Now, the sparse innovations
{ûi}ki=1 can be vectorized and rearranged as
u1

u2

...
uk−1

 =


I 0 . . . 0
−A1 I . . . 0

...
...

. . .
...

0 . . . −Ak I



x1
x2
...

xk−1

−

A0x̂0
0
...
0


u = Ax− z (4a)

where, x̂0 is the initial estimate. Now, using (4) we can rear-
range the second term in (3) as

k∑
i=1

‖ Hixi − yi ‖22 =‖ Hx− y ‖22 (5a)

=‖ HA−1u−
(
y −HA−1z

)
‖22

=‖ HA−1u− ỹ ‖22 (5b)

where, y is the vector obtained by stacking {yi}ki=1 sampled
vectors, ỹ = y − HA−1u and H is obtained by stacking
the sampling matrices {Hi}ki=1 along the diagonal of kNxkM
matrix. Note, in (5b), A−1 is simple to calculate due to the
lower-triangle property of matrix A. Using (1a) and (5b) in
equation (3), the new fixed-interval optimal smoother is:

min
u1,...,uk

k∑
i=1

‖ u ‖1 +
1

2
‖ HA−1u− ỹ ‖22 (6)

where, τi = 1, λi = 1∀i is assumed to yield the recognizable
basis-pursuit denoising problem [18]. In (6), the dimensional-
ity of the problem increases with k. For tractable problems, a
sliding window based approach can be used. The solution to (6)
for all experimental results presented in this paper are obtained
using the the NESTA toolbox which implements the Nesterov’s
algorithm [19].

3. EXPERIMENTS AND RESULTS

The proposed linear dynamical system (LDS) based fast dy-
namic MRI technique is validated through retrospective under-
sampling experiments on in-vivo myocardial perfusion data set
(complex raw images). Following metrics are used to quantify
the fidelity of recovered images in retrospective experiments :
(1) SNR : signal-to-noise ratio and, (2) SSIM: structural sim-
ilarity index [20]. In this paper, experimental results are pre-
sented for both 2DFT and radial under-sampled acquisitions.
For radial under-sampling inverse-gridding is used to gener-
ate k-space data from complex raw images. In addition, the
proposed technique is compared with 1) the standard Wavelet
sparsity based CS technique [9] for 2DFT under-sampling and,
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(a) Ref #17→ (b) (16.9 dB, 0.8753) (c) (13.0 dB, 0.7848) (d) LDS Error #18

(e) Innovation (f) LDS (g) WAV (h) Reference #18

(i) Ref #18→ (j) (16.8 dB, 0.8995) (k) (13.4 dB, 0.8304) (l) WAV Error #18

Fig. 1: Comparison of image recovery using the LDS and the WAV technique at an acceleration R = 4. (a) zoomed-in region
from the reference image (f) of time-point (tp)#17. (i) zoomed region from reference tp#18. (e) shows the difference between (a)
and (i), i.e., the innovation in the LDS technique. The second and third column show the recovered images and innovations for
proposed LDS and the WAV technique, respectively. Performance for each technique is reported as pairs (SNR, SSIM) below the
corresponding recovered images. (d) and (l) show the error images for the LDS (tp#17) and WAV (tp#18) technique, respectively.

2) the highly-constrained back-projection technique of [7] for
radial under-sampling. For reasons of convenience the experi-
mental results for the proposed technique will be referred to as
LDS, for the Wavelet sparsity based CS technique as WAV and,
for the technique of [7] as HYPR.

The perfusion data was acquired on a 3T Siemens scan-
ner with a saturation-recovery sequence (TR\TE= 2.5/1ms,
saturation recovery time= 100ms) and comprises of an image
matrix of size 90x190x70 (phase-encodes x frequency encodes
x temporal slices) [11]. Figure 1 shows the results for an retro-
spective variable density 2DFT under-sampling experiment at
an acceleration factor of R = 4. For the LDS method, a sliding
window of 4-samples (k in (4a)) is used and the initial state es-
timate x̂0 is obtained by combining data from all time-points in
the first sliding window and a taking a Fourier transform of it.
Recovered images for two consecutive time-points (17 and 18)
and the true and recovered innovation signal (u17 in (1a)) are
shown for both the LDS and WAV techniques. The LDS tech-
nique estimates the innovation signal in fig. 1f using composite
under-sampled data from 4-time-points and adds this innova-
tion to fig. 1b to obtain the estimate for fig. 1j. The WAV tech-
nique treats each time-point independently and the innovation
shown in 1g is calculated post-image-recovery. The LDS tech-
nique outperforms the WAV technique qualitatively and quan-

titatively as it inherently accounts for the temporal correlations
which are not exploited in the WAV technique. The LDS tech-
nique shows much reduced under-sampling artifacts than the
WAV technique, this can be observed in the error images of
figs. 1d and 1l. Again, this can be attributed to inherent sharing
of k-space information through the used time-evolution model
which is absent in the WAV technique.

(a) LDS varying (k) (b) SNR vs. R

Fig. 3: (µ ± σ) SNR vs. R curves for: (a) varying sliding
window size for LDS technqiue. (b) different techniques.

Results for the radial under-sampling experiments at an ac-
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(a) (18.1 dB, 0.8839) (b) LDS Innovation (c) (18.1 dB, 0.9042) (d) LDS Error #18

(e) (13.7 dB, 0.8279) (f) HYPR Innovation (g) (14.5 dB, 0.8637) (h) HYPR Error #18

Fig. 2: Comparison of image recovery using the LDS and HYPR techniques at an accelerationR = 4. (a) and (e) zoomed-in region
from recovered images for time-point (tp) #17 for the LDS and HYPR technique, respectively. Similarly, (c) and (g) zoomed-in
region from recovered images for tp#18. Corresponding innovations are shown in (b) and (f).(d) and (h) show the error images for
the tp#18 for the LDS and HYPR technique, respectively. Performance for each technique is reported as pairs (SNR, SSIM).

celeration factor of R = 4 for the LDS and the HYPR [7]
techniques are shown in figure 2. Due to limited space, only
the recovered images, innovation and error images are shown.
However, results are presented for the same time-points (# 17
and 18) as shown in fig. 1. Similar to the 2DFT experiments,
the LDS method uses a sliding window of 4-samples and uses
the image recovered using the HYPR technique as the initial
state estimate x̂0. In fig. 2, for both techniques no visible ra-
dial streaking artifacts are observed as they both use raw-data
from multiple time-points to estimate each image. The HYPR
technique results in smoothing of details and edges as seen in
figs. 2e, 2f and 2g. This loss at edges is results in large er-
rors at edges in fig. 2h. On the contrary, the proposed LDS
technique uses combined data to estimate the innovation sig-
nal with sparsity constraint which does not adversely effects the
image details. The LDS error image in fig. 2d shows discrepan-
cies which are not localized to edges. For the LDS method the
sliding window size can be varied (k in (4a)). Increasing k in-
creases the dimensionality of the problem (6) and the sampled-
data being used for estimating the sparse innovations. Figure 3a
shows the (mean± std. deviation) SNR versus acceleration (R)
curves for varying k for the radial under-sampling experiment
for the complete data set. Additionally, for deriving statistically
relevant conclusion on relative performance of LDS (2DFT &
radial), HYPR and WAV techniques, fig. 3b shows the corre-
sponding SNR vs. R curves.

First-pass myocardial perfusion MRI is used to detect and
evaluate ischemic heart disease [21]. Regional perfusion de-
fects can be detected by analyzing the signal variability in an
image time-series. Thus, to assess the applicability of a fast
technique for myocardial perfusion imaging, time series plots
of averaged signal intensity in selected blood pool and my-
ocardium regions are critically evaluated. Figures 4a and 4b
compare the time-series plots of averaged signal intensity in

(a) HYPR (b) LDS

Fig. 4: Time-series plot of avg. signal for recovered (at R = 6)
and reference images for the myocardial perfusion dataset.

selected blood pool and myocardium regions in reference im-
ages with that of the recovered images at acceleration R = 6
using the LDS and the HYPR techniques, respectively. The se-
lected blood pool (in red) and myocardium (in green) regions
are shown in Figs. 1a. As expected, the time series curve for re-
covered images using the LDS technique follows the reference
curve more closely than the curve for the HYPR technique.

4. CONCLUSIONS

This paper presents a novel dynamic MRI technique which
assumes a prior time-evolution model for the underlying phys-
iological function and enforces the model errors to be sparse.
Further, the dynamic imaging problem is rearranged as the
tractable basis pursuit de-noising problem. Preliminary results
for dynamic MRI recovery experiments on an in-vivo cardiac
data set are better than the previously established fast dynamic
MRI methods based on variable density k-space sampling.
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