
CODED EXCITATION ULTRASOUND: EFFICIENT IMPLEMENTATION VIA FREQUENCY
DOMAIN PROCESSING

Almog Lahav, Yuval Ben-Shalom, Tanya Chernyakova and Yonina C. Eldar

Technion - Israel Institute of Technology
Dept. of Electrical Engineering

Haifa 32000, Israel

ABSTRACT
Modern imaging systems use single-carrier short pulses for trans-
ducer excitation. The usage of coded signals allowing for pulse com-
pression is known to improve signal-to-noise ratio (SNR), for exam-
ple in radar and communication. One of the main challenges in ap-
plying coded excitation (CE) to medical imaging is frequency depen-
dent attenuation in biological tissues. Previous work overcame this
challenge and verified significant improvement in SNR and imaging
depth by using an array of transducer elements and applying pulse
compression at each element. However, this approach results in a
large computational load. A common way of reducing the cost is
to apply pulse compression after beamforming, which reduces im-
age quality. In this work we propose a high-quality low cost method
for CE imaging by integrating pulse compression into the recently
developed frequency do- main beamforming framework. This ap-
proach yields a 26-fold reduction in computational complexity with-
out compromising image quality. This reduction enables efficient
implementation of CE in array imaging paving the way to enhanced
SNR, improved imaging depth and higher frame-rate.

Index Terms— Array processing, coded excitation, beamform-
ing, ultrasound.

1. INTRODUCTION

In standard ultrasound imaging, a transducer transmits a short single-
carrier Gaussian pulse of acoustic energy into the tissue along a nar-
row beam. The echoes are scattered by the objects within the tissue
and are detected by the transducer elements. These echoes, that are
essentially the replicas of the transmitted pulse, are processed and
presented as an image line. Consequently the axial resolution is de-
fined by the duration of the transmitted pulse. Signal-to-noise ratio
(SNR) and imaging depth can be improved by increasing the trans-
mitted energy. However, transmitting more energy with the same
pulse duration, i.e. resolution, requires higher peak intensity levels,
which can potentially damage the tissue and thus are limited by the
Food and Drug Administration (FDA).

When coded signals are used for excitation, pulse compression
is performed on the detected signal by applying a matched filter
(MF) defined by the transmitted pulse-shape. As a result a stream
of pulse’s replicas is converted to a stream of its autocorrelations.
The width of the pulse’s autocorrelation is on the order of the in-
verse bandwidth [1], implying that the resolution is now defined by
the available system’s bandwidth and is independent on pulse dura-
tion. Therefore, we can use a longer pulse and transmit more energy
without degrading range resolution. Experimental results reported in
[2] show improvement of 15-20 dB in SNR as well as 30-40 mm im-
provement in penetration depth obtained with coded excitation (CE).

Beyond the improvement in imaging depth, high SNR allows the uti-
lization of higher frequencies and consequently better image resolu-
tion. In addition, Misaridis and Jensen have shown a way to increase
the frame rate by an orthogonal coding approach [3, 4, 5].

One of the main challenges of CE in medical ultrasound is its
application to array imaging. Most modern imaging systems use
multiple transducer elements to transmit and receive acoustic energy.
This allows to perform beamforming during both transmission and
reception. Dynamic beamforming upon reception results in optimal
focusing at each depth and leads to SNR enhancement and improve-
ment of angular localization. An ideal implementation of CE in array
imaging requires a MF for every transducer element and thus results
in high computational complexity. Most reported studies use either
a single transducer element [4] or an array of transducer elements
with one MF applied on the beamformed signal [2, 6]. The latter
approach results in error in pulse compression and degrades image
quality. This effect depends on the length of the transmitted pulse,
the position of the transmit focus and imaging depth [2, 7].

In this work, we propose a solution for the computational com-
plexity problem based on frequency domain beamforming. As
shown in [8] beamforming can be performed equivalently in the
frequency domain. By integrating the pulse compression into fre-
quency domain beamforming, we apply a MF at each detected signal
without affecting the complexity of frequency domain processing.
For typical imaging parameters, the above approach leads to a 26
fold reduction in the number of multiplications compared to time
domain implementation. This efficient implementation allows CE to
become a practical approach in array imaging.

The rest of the paper is organized as follows: Section 2 briefly
reviews basics of CE applied to medical imaging. In Section 3 we
discuss the requirements and challenges of CE in the context of ar-
ray imaging. We next propose a solution based on frequency domain
beamforming in Section 4. Simulation results are presented in Sec-
tion 5.

2. CODED EXCITATION IN MEDICAL ULTRASOUND

In CE a modulated signal is used for transducer excitation:

s(t) = a(t) cos (2πf0t+ ψ(t)) , (1)

where ψ(t) and a(t) are phase and amplitude modulation functions
respectively, and f0 is the central frequency of a transducer. Pulse
compression is performed on the detected signal, φ(t), by applying a
MF, h(t) = s∗(−t). For a signal comprised of K scatterers the out-
put of the MF is a combination of autocorrelations of the transmitted
pulse [3]:

φCE(t) = φ(t) ∗ s∗(−t) =
K∑

k=1

αkRss(t− tk), (2)
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Fig. 1. (a) Ambiguity function of Linear FM with time-bandwidth product of D = 70. (b) On the left echoes are reflected from 3 point
scatterers in the medium. The received signal of each element is composed of reflections of a linear FM waveform. Beamforming is applied
on compressed signals, obtained at the output of the MF.

where αk and tk denote the amplitude and the time delay of the re-
flection from the kth scatterer respectively. The half-power width
of the main lobe of the autocorrelation, which determines the range
resolution, is approximately equal to the inverse bandwidth B−1 of
the transmitted pulse [1]. As a result, in contrast to conventional
imaging, the pulse time duration, T , can be increased allowing for
more transmit energy without degrading range resolution. The re-
sulting gain in signal-to-nosie ratio (GSNR) of the MF processing is
approximately equal to the time-bandwidth product TB [9].

The above result holds when the detected signal is comprised of
the exact replicas of the transmitted pulse. In practice when acous-
tic wave propagates in biological tissues, high frequencies undergo
stronger attenuation due to the medium properties. A common way
to model this effect is to assume that it does not distort the complex
envelope of the signal but only downshifts the central frequency [10].
This shift can be treated as a doppler shift. Therefore, in an attenu-
ating medium the output of the MF is a stream of cross-sections of
the ambiguity function of the transmitted pulse [3]:

φCE(t) = φ(t) ∗ s∗(−t) =
K∑

k=1

αkA(t− tk, fk). (3)

The ambiguity function,A(t−tk, fk), describes the MF output when
the input signal has a frequency shift fk and is delayed by tk. In
ultrasound imaging the frequency shifts do not carry valuable infor-
mation and thus do not need to be found explicitly. Therefore, the
ideal ambiguity function should have a good range resolution for
all frequency shifts, while good frequency resolution is not required
[3]. This makes linear frequency modulation (FM) a good choice for
ultrasound imaging. For this choice:

s(t) = a(t) cos

(
2π

(
f0t+

B

2T
t2
))

, − T

2
≤ t ≤ T

2
. (4)

The frequency spectrum of a linear FM complex envelope is
rectangular, so that the envelope of the MF output is approximately a
sinc function [11]. One can recognize this shape in the cross sections
of the linear FM ambiguity function shown in Fig. 1 parallel to the
frequency axis. Note that these cross sections preserve their range
resolution for every frequency shift, implying robustness to atten-
uation. Significant improvement of penetration depth and contrast
obtained with linear FM excitation are reported in [4]. The results in
[4] were obtained with a single-element transducer, while imaging
systems today use an array of transducer elements. The implication
of array processing is discussed next.

3. USE OF CODED EXCITATION IN ARRAY IMAGING

3.1. Dynamic Beamforming in Time

In ultrasound imaging a scan-line is obtained by beamforming,
namely, averaging the detected signals after their alignment with
appropriate time-dependent delays. In this way optimal focusing at
each depth is obtained leading to SNR enhancement and improve-
ment of angular localization. To derive an the beamforming equation
we consider an array ofM elements, illustrated in Fig. 1. Denote by
m0 the reference element and by δm its distance to themth element,
and by c the speed of sound. For a pulse transmitted in direction θ,
the beamformed signal is given by [8]:

Φ(t; θ) =
1

M

M∑
m=1

φm(τm(t; θ)) (5)

τm(t; θ) =
1

2

(
t+

√
t2 − 4(δm/c)t sin θ + 4(δm/c)2

)
,

where φm(t) is the signal detected by the mth element and τm(t; θ)
is the time delay needed to be applied in order to align the reflection
received by this element.

3.2. Matched Filtering and Beamforming

As explained in Section 2, in the CE approach, pulse compression is
achieved by applying a MF on the detected signal. Array imaging
requires matched filtering of the detected signal of every transducer
element prior to beamforming as illustrated in Fig. 1. Using (5)
and substituting the MF impulse response h(t) = s∗(−t) the beam-
formed signal is given by:

ΦCE(t; θ) =
1

M

M∑
m=1

{φm ∗ h}(τm(t; θ)). (6)

The practical meaning of this direct implementation is that the
computational complexity is vastly increased by filtering each de-
tected signal, which restricts the use of CE in array imaging. A triv-
ial way to overcome this problem is beamforming pre-compression,
i.e. beamforming is performed before pulse compression [7]. This
requires only one MF allowing to save:

N ≈ (Ne − 1)

(
3

2
(Ns +Nh) log(Ns +Nh) +Ns +Nh

)
, (7)

multiplications, where Ne, Ns and Nh are the number of elements,
number of samples and MF length respectively. With this approach,
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however, we get a different expression for the resulting beamformed
signal:

ΦCEpre(t; θ) =

{
1

M

M∑
m=1

φm(τm(t; θ))

}
∗ h(t). (8)

As can be seen in (5), the applied delays are non-linear functions of
time, which distort the phases of the coded signal. Therefore when
preceding the compression, the delays result in an error in the com-
pression:

e(t) = |ΦCE(t; θ)− ΦCEpre(t; θ)|. (9)

The error is larger for small depth and can be decreased by limit-
ing pulse duration T < 64/f0 [2, 7]. However this upper bound
restricts the GSNR of the MF processing which is defined by the
time-bandwidth product.

Fig. 2 shows a simulated scan-line with a point scatterer located
at 25 mm from a transducer. The main lobe of the resulting point
spread function is approximately 10% wider when beamforming is
performed prior to pulse compression. In addition, the first side lobe
from the left is 14 dB higher. Details on the simulation environment
are elaborated in Section 5. Obviously when the trivial solution of
beamforming pre-compression is used in order to reduce the compu-
tational complexity the image quality is compromised.
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Fig. 2. A single scan-line of a point scatterer. The black line is
produced with beamforming pre-compression, and the gray line is
produced with beamforming post-compression.

4. INTEGRATING PULSE COMPRESSION IN
FREQUENCY DOMAIN BEAMFORMING

As shown in [8] the beamforming can be performed equivalently
in the frequency domain. In this section we will use the derivation
in [12], and with appropriate changes obtain a new formulation of
frequency domain beamforming that includes pulse compression at
each element without increasing the computational complexity of
this technique.

Let φ̂m(t; θ) be the signal received by the mth element after
applying the beamforming delay:

φ̂m(t; θ) = φm(τm(t; θ)). (10)

Using (5) the Fourier series coefficients of the beamformed signal
Φ(t; θ) with respect to the interval [0, T ) can be expressed as [8]:

c[k] =
1

M

M∑
m=1

ĉm[k], (11)

where ĉm[k] are given by:

ĉm[k] =
1

T

∫ T

0

φm(t)qk,m(t; θ)e−i 2π
T

ktdt. (12)

The delays of every signal φm(t) are effectively applied through the
distortion function qk,m(t; θ) defined in [8].

To incorporate pulse compression, each signal φm(t) is replaced
by the MF output:

φCE
m (t) = {φm ∗ h}(t). (13)

We next replace φCE
m (t) by its Fourier coefficients cCE

m [n]:

ĉCE
m [k] =

1

T

∫ T

0

{φm ∗ h}(t)qk,m(t; θ)e−i 2π
T

ktdt (14)

=
∑
n

cCE
m [n]

1

T

∫ T

0

qk,m(t; θ)e−i 2π
T

(k−n)tdt

=
∑
n

cCE
m [k − n]Qk,m;θ[n],

where Qk,m;θ[n] are the Fourier coefficients of qk,m(t; θ) with re-
spect to [0, T ). When substituted by its Fourier coefficients, the dis-
tortion function effectively transfers the beamforming delays defined
in (5) to the frequency domain. The function qk,m(t; θ) depends
only on the array geometry and is independent of the detected sig-
nals. Its Fourier coefficients can be computed off-line and used as a
look-up-table (LUT) during the imaging cycle.

According to [8] most of the energy of the set {Qk,m;θ[n]} is
concentrated around the direct current (DC) component. This be-
havior is typical to any choice of k, m or θ. We therefore rewrite
(14) as

ĉCE
m [k] ≃

N2∑
n=−N1

cCE
m [k − n]Qk,m;θ[n] (15)

where the choice of N1 and N2 controls the approximation quality.
According to (13) and the convolution theorem, the Fourier coeffi-
cients cCE

m [n] are given by cm[n]h[n], where cm[n] and h[n] are the
Fourier coefficients of the signal φm(t) and the MF respectively. We
can now rewrite (15) as

ĉCE
m [k] ≃

N2∑
n=−N1

cm[k − n]h[k − n]Qk,m;θ[n] (16)

=

N2∑
n=−N1

cm[k − n]Q̃k,m;θ[n]

where the set {Q̃k,m;θ[n]} includes the Fourier series coefficients of
the MF and therefore performs beamforming and pulse compression
simultaneously in the frequency domain. Obviously, incorporation
of pulse compression does not affect computational complexity of
frequency domain beamforming, since it only requires to update the
set of frequency weights which is performed off-line. Substitution of
(16) into (11) yields a relationship between the Fourier coefficients
of the beam and the individual detected signals:

c[k] ≃ 1

M

M∑
m=1

N2∑
n=−N1

cm[k − n]Q̃k,m;θ[n]. (17)

Applying an inverse Fourier transform on {c[k]} results in the beam-
formed signal in time.
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Fig. 3. A medium with point scatterers every 10 mm on the range axis and horizontally in the depth of 170 mm. (a) Time domain processing.
(b) Frequency domain processing.
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Fig. 4. A single scan-line of point scatterers positioned at 25, 70 and
110 mm. The black dashed and grey lines correspond to frequency
domain beamforming with MF and time domain beamforming post-
compression respectively.

5. RESULTS

To verify the performance of pulse compression in the frequency do-
main, we simulated CE imaging with an open source MATLAB tool-
box: k-Wave [13]. The simulations run on the GPU card NVIDIA
Tesla-K40 with 12Gb RAM, using MATLAB Parallel computing
toolbox. Using k-Wave we simulated nonlinear ultrasound waves
propagation in attenuating medium, corresponding to realistic tissue
behavior [14]. High density point scatterers are positioned within
the medium. The array contains 64 transducer elements, each one
transmits a linear FM defined in (4), with time-bandwidth product
D = 100, and central frequency f0 = 3.4 MHz.

Fig. 4 compares two scan-lines of transmission at angle 0◦,
along the range axis. The black one is obtained by frequency do-
main beamforming with pulse compression according to (17), while
the gray one results from applying a MF on every transducer element
followed time domain beamforming. As can be seen, both methods
yield identical results. In particular, we can see that around 25 mm
the main lobe preserves its width and the side lobes are of the same
amplitude, in contrast to beamforming pre-compression showed in
Fig. 2. Two images with sector angle of 64◦ are presented in Fig.
3. Point scatterers are positioned on the range axis every 10 mm
and horizontally in the depth of 170 mm. As can be seen, frequency
domain beamforming achieves the same image quality as the time

domain beamforming post-compression. The performances in terms
of contrast and resolution are identical in both approaches.

For the derivation of the computational complexity reduction we
consider only multiplications required in both methods. The number
of samples comprising each scan-line is denoted by Ns, and is de-
termined by the sampling rate. To avoid degradation of beam qual-
ity the rate should be 4-10 times the transducer’s central frequency
[15]. The Fourier coefficients of the beamformed signal given in (17)
are a combination of the Fourier coefficients of the received signals
φm(t). The latter are obtained from the low-rate samples of the re-
ceived signals, using the Xampling method [16, 17, 18] as elaborated
in [8]. Hence, the number of multiplications needed for a computa-
tion of one scan-line using K coefficients from the set {c[k]} is:

Na =MKNQ +
Ns

2
logNs, (18)

including the inverse Fourier transform. Here NQ denotes the num-
ber of Q̃k,m;θ[n] coefficients taken for the approximation in (16).

When applying the conventional beamforming post-compression,
the computation includes the complexity of M matched filters and
interpolation ofM signals to apply the time-varying delays. Assum-
ing linear complexity for the linear interpolation and an efficient MF
implementation using FFT:

Nb =MNs +M

(
3(Ns +Nh)

2
log(Ns +Nh) +Ns +Nh

)
,

(19)
multiplications are needed. For an array comprised of 64 elements
and sampling rate fs = 16 MHz the frequency domain beamforming
requires 26 times less multiplications.

6. CONCLUSIONS

In this paper we proposed a method allowing to avoid the high com-
putational load required by CE array imaging. The proposed method
is based on integration of pulse compression applied to each one of
the detected signals to the recently developed frequency domain pro-
cessing scheme. Based on the comparison of single scan-lines and
full images, we show that the above approach yields the same per-
formances in terms of contrast and resolution while achieving 26
fold reduction in computational complexity. The achieved complex-
ity reduction enables efficient implementation of CE in array imag-
ing paving the way for enhanced SNR as well as improved imaging
depth and frame-rate.
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