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ABSTRACT

Single-particle imaging experiments using X-ray Free-Electron
Lasers (XFEL) belong to a new generation of X-ray imaging
techniques potentially allowing high resolution images of non-
crystallizable molecules to be obtained. One of the challenges
of single-particle imaging is the reconstruction of the 3D intensity
function from only a few samples collected on a planar detector after
the interaction of a free falling molecule and the X-ray beam. In this
paper, we take advantage of the symmetries of the intensity function
to propose an original low-resolution reconstruction algorithm based
on an Expansion Maximization Compression (EMC) approach. We
study the problem of adequate sampling of the rotation group via
simulation to illustrate the potential of the approach.

Index Terms— Spherical Expectation Maximization Compres-
sion (EMC), Spherical Harmonic Transform (SHT), Sampling on
SO(3), Low-resolution reconstruction, Intensity functions, X-ray
Free-Electron Laser (XFEL).

1. INTRODUCTION

Single particle imaging has been proposed as a method of deter-
mining the atomic structures of biomolecules that do not crystallize
and, hence, have remained inaccessible to X-ray crystallography. X-
ray Free-Electron Lasers (XFEL) produce pulses with up to a bil-
lion times higher peak brightness than synchrotron sources and have
made it possible for the first time to collect X-ray diffraction from
single protein molecules. These measurements are nevertheless ex-
tremely noisy because a single protein molecule is a very weak scat-
terer. The measurement is also destructive so each molecule can
only be measured once. It is femtosecond time scale of the pulse
which enables the diffraction to outrun the damage processes, so the
measurement can be made at all. To obtain 3D information, mul-
tiple identical molecules are continuously injected into the path of
the X-ray pulses. To gain 3D information and overcome low signal-
to-noise, large datasets of millions of diffraction patterns are col-
lected, exploiting the high repetition rates (> 100 Hz) of X-ray laser
sources. The drawback of continuous injection is that the orientation
of each molecule is not controlled or known. To proceed with 3D
imaging, the data needs to be assembled into a 3D intensity func-
tion by determining the unknown orientations. Currently the most
popular solution is to determine relative orientation by analyzing
the diffraction data and a number of algorithms have been proposed
[17, 14, 6, 1, 15]. Here we focus on extending a Bayesian approach
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known as the Expansion-Maximization-Compression (EMC) algo-
rithm [10, 5] by reformulating it with spherical harmonics. Our goal
is to develop an algorithm that permits the resolution and complexity
of the problem to be readily scaled. We expect this to lead to more
efficient algorithms for single particle imaging.

2. MATHEMATICAL PRELIMINARIES

Before presenting the measurement model, we first introduce the
3D intensity to be reconstructed. This intensity I(q) is related
to the Fourier transform of the electron density ρ(mol)(r) of the
biomolecule [2] the following way:

I(q) = |F (q)|2I0 ,with F (q) =

∫
ρ(mol)(r) exp(iq ·r)d3r

(1)

with I0 a scaling factor depending on the beam intensity, cross-
section of the sample and the experimental geometry, and F (q) the
molecular transform, where r is the position variable used to locate
atoms in the molecule and q its dual variable (spatial frequency).
The electron density ρ(mol)(r) is characteristic of each molecule
and is the targeted quantity to be recovered, once the intensity is
properly estimated, through a phase retrieval procedure [13]. In
the present single-particle diffraction imaging setting, the intensity
function exhibits the following properties: (i) it is a real-valued non-
negative continuous function, (ii) it has the Friedel symmetry prop-
erty I(q) = I(−q), (iii) it is a bandlimited function [2].

2.1. 3D reconstruction from 2D spherical shells

While the classical EMC algorithm works on the complete 3D
intensity as a whole [10], our approach consists in attempting to
reconstruct the intensity on spherical shells, before eventually re-
assembling them. This is motivated by the possible use of harmonic
analysis on spheres in the reconstruction step. Figure 1 presents
the relation between the diffraction pattern and the observations
available.

Circles on a diffraction pattern (Fig 1.A) correspond to intersec-
tions between the spherical 2D slice and a spherical shell s, with cor-
responding qs radius on the diffraction pattern (Fig. 1.B and 1.C).
Fig 1.D and 1.E show the circles associated to the same shell on
different patterns. Fig 1.F and 1.G present the number of samples
available for inner and outer shell. The reconstruction problem on
a shell thus consists in building up an estimate of the intensity on a
sphere from a few samples taking values on circles drawn (at ran-
dom location) on that sphere. In the sequel, we present the case of
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two shells which illustrate well the complexity of the 3D intensity
function: an inner shell (Fig 1.D) and an outer shell (Fig 1.E).

2.2. Efficient intensity representation using spherical harmonics

We denote by Is(Ω) the intensity on the shell s where the super-
script s is for the radius qs and Ω is the position vector on the 2-
sphere S2 . Recall that the spherical harmonic functions Y m

l form a
complete orthonormal basis for functions in L2(S2). The intensity
function Is can then be expanded as

Is(Ω) =

Llim
s −1∑
l=0

l∑
m=−l

Iml (qs)Y m
l (Ω), Iml (qs)

∆
= 〈Is, Y m

l 〉S2 , (2)

where the spherical harmonic coefficients Iml (qs) are obtained
by projection onto the spherical harmonic functions with the
standard inner product 〈·, ·〉S2 on the 2-sphere. This set of co-
efficients is called the Spherical Harmonic Transform (SHT) of
Is(Ω). The spherical harmonic coefficients form an efficient
representation of the intensity function; indeed since the inten-
sity function is real-valued, we have the conjugation property
I−m
l (qs) = (−1)mIml (qs) for m > 0. In addition, a key property

of the intensity functions in X-ray scattering is that it fulfills the
Friedel symmetry [18], which states that

Is(Ω) = Is(−Ω)⇔ Iml (qs) = 0, ∀l = 2p+ 1, p ∈ N. (3)

This property induces that odd degrees of the SHT of the intensity
vanish. This can be easily demonstrated using the parity property of
spherical harmonics [16].

2.3. Measurement model

We propose hereafter a mathematical model of the measurement pro-
cess, based on the single shell formulation. We consider a reference
set of N points on the shell s denoted by Ds such that:

Ds ∆
= {qi = (qs,Ωi)|i = 1, 2, . . . , N} , (4)

where Ωi = (φi, θ(qs)) ∈ [0, 2π) × [0, π]. Examples of Ds are
displayed on Figure 1. The dependence of θ on the radius qs is
a consequence of the scattering geometry, see [12, equation 2] for
the explicit relation. To be consistent with the diffraction imaging
context, the number of points N on the detector are also scaled as a
function of qs, such that:

N =

⌈
2πqs
∆q

⌉
, φi =

2π

N
i, i ∈ {0, 1, . . . , N − 1} , (5)

where d·e denotes the ceiling function, and ∆q is the reciprocal
space pixel size. The analogy with the single-particle experiment
is as follows. Each observation k corresponds to a random rotation
Rk of the molecule, and on the shell s the circle intersection is given
by:

Ds
Rk

∆
= {Rk · qi|i = 1, 2, . . . , N} . (6)

Random rotations Rk are assumed to be distributed uniformly on
SO(3) as free falling particules have no prefered orientation. Each
measurement yk = (y1k, y2k, . . . , yNk)T consists in a set of N
samples yik given by:

yik = P {Is (Rk · qi)} , Rk ∼ U [SO(3)] . (7)

Here P {x} denotes the Poisson distribution of parameter x. Three
Poisson measurements for k = 1, 2, 3 in both the inner and outer
shells are displayed in Figure 1E and 1F. They illustrate the low
number of samples k with respect with the measurement points N ,
especially in the outer shell.

3. SPHERICAL EMC ALGORITHM

We develop here an extension of the Expansion-Maximization-
Compression (EMC) algorithm [10] in a spherical setting. This
reformulation is motivated by: (i) the intrinsic geometry of the scat-
tered intensity function; (ii) the use of spherical harmonics to obtain
low-resolution reconstructions.

The EMC algorithm relies on an Expectation-Maximization
(EM) algorithm [3], with two extra Expansion and Compression
steps, as explained below. We reproduce some material from [10],
and transpose the algorithm to the spherical setting.

3.1. Presentation

The spherical EMC algorithm proposed here consists of an update
rule Iml (qs) → Ĩml (qs) of the low-degree spherical harmonic coef-
ficients of the intensity.

The EMC algorithm restores the missing orientation information
from the measurements k by introducing a tomographic grid, which
is defined by successive rotations of the reference measurement co-
ordinates qi. Precisely, given a uniform deterministic sampling set
X ⊂ SO(3), the tomographic grid points are defined by qij =
Rjqi, Rj ∈ X . A tomographic intensity is a set Iij = I(qij),
where the intensity is evaluated at the tomographic grid points. The
tomographic intensity model is at the heart of the EMC algorithm,
as we now explain.

Under the assumption that the measurements are independent,
the joint conditional probability for a rotation j and measurement k
reads:

Rjk
∆
= P (yk| {Iij}i=1,...,N ) =

N∏
i=1

(Iij)
yik exp(−Iij) (8)

where an irrelevant j-independent factor has been omitted. The
probability Pjk that the observation k corresponded to the rotation j
is given by the normalization of Rjk

Pjk =
Rjk∑M
j=1 Rjk

, (9)

where, as opposed to [10], the weightswj have disappeared since the
rotation sampling set X is chosen such that the weights are uniform.
This point is discussed further in section 3.3. The total likelihood
function L is given by

L
(
Ĩij

∣∣∣Iij ,yk

)
=

K∑
k=1

M∑
j=1

Pjk

N∑
i=1

(
yik log Ĩij − Ĩij

)
. (10)

Simple calculation therefore leads to the Maximization step:

(M) : Iij → Ĩij =

∑K
k=1 Pjkyik∑K
k=1 Pjk

. (11)

One can note that the tomographic grid is indeed a redundant model
of the true intensity I , since it is possible to find (i′, j′) 6= (i, j) such
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Fig. 1. Spherical shell equivalency for single-particle imaging. A: typical diffraction pattern, with two shells labelled (inner and outer). B and
C: corresponding spherical slices through the shell intensity function. D and E: Equivalent shell reconstruction problem using 1D circular
sampling points. F: and G Corresponding Poisson samples for the sampling locations labeled on D and E.

that the tomographic points qij and qi′j′ are really close from each
other. Therefore we need to restore the consistency of the model,
and this is done in the Compression step.

In the spherical setting, the Compression step corresponds to two
distinct steps. First, the tomographic model has to be compressed
to a regular spherical grid G, and thus the spherical harmonic co-
efficients can be retrieved with the Spherical Harmonic Transform
(SHT):

(C) : Ĩij → ĨG(qs)→ Ĩml (qs) (12)

The Expansion step is the reverse part, where we first apply the
inverse SHT to get the intensity on the grid G, and we interpolate to
get the tomographic intensity model

(E) : Iml (qs)→ IG(qs)→ Iij . (13)

The implementation of C and E steps are discussed in the next sec-
tion. The EMC algorithm performs successively the E,M,C steps
until convergence is achieved. The use of spherical EMC raises two
issues: how to sample the sphere (i.e. choose a grid G where the in-
tensity is estimated) for the reconstruction of the intensity at a given
resolution degree L < Llim

s , and how the rotation sampling set X
has to be chosen. The following sections address these problems.

3.2. Low-resolution intensity functions and compatible grid

We are interested in the reconstruction of low-resolution intensity
models, that is we look at models which read

Is(Ω) =

L−1∑
l=0

l∑
m=−l

Iml (qs)Y m
l (Ω) (14)

where L < Llim
s is the bandlimit of the reconstruction. Numer-

ous sampling theorems on the sphere have been proposed to date
[4, 9, 11]. Our work uses the HEALPix framework [7] to repre-
sent bandlimited functions on the sphere. This grid exhibits a hier-
archical structure, equal-area partition of the sphere and was origi-
nally developed for full-sky measurements of the Cosmic Microwave
Background (CMB). The resolution of the grid is controlled by the
parameter nside, such that the number of pixels npix reads

npix = 12n2
side, nside = 1, 2, 4, 8, . . . . (15)

The HEALPix sampling scheme lacks an exact quadrature formula
on the sphere, however it provides a good approximation of integrals
of L-bandlimited functions provided that [7]

L ≤ 2nside +1 with weights wi =
4π

npix
, i = 1, 2, . . . , npix. (16)

The Compression step is done as follows. We first determine the to-
mographic points qij belonging to each HEALPix pixel. Then the
intensity value on this pixel is given by Inverse Distance Weight-
ing between the respective qij and the pixel center. The coefficients
Iml (qs) are then computed up to degree L − 1 as given by the sam-
pling theorem (16). The Friedel symmetry is restored by canceling
the coefficients for odd values of l. The Expansion step is done by
the successive expansion of the coefficients Iml (qs) to obtain IG(qs),
then by computation of the tomographic intensities by bilinear inter-
polation on the sphere.

3.3. Rotation group sampling sets for low-resolution

Several uniform deterministic sampling sets on SO(3) have been
defined in [8] based on the tensor product S2 × S1 structure of the
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rotation group. The idea is to build sampling sets from Platonic
solids in R3, namely in our case from the tetrahedron and the icosa-
hedron. This leads to the definition of the associated rotation groups,
tetrahedron-based XT and icosahedron-based XI , with respective
sizes |XT | = 12 and |XI | = 60. We note that the icosahedron-based
sampling has the same size as the smallest sampling set proposed in
the original EMC paper [10].

Since we are interested in low-resolution models, we would like
to give a criterion to choose the appropriate rotation sampling set. It
seems indeed that an over-resolved rotation sampling set is unnec-
essary in the estimation of low-resolution models. A quantification
of the resolution of a sampling set can be given by considering the
quadrature degree on SO(3) associated with this sampling set. The
quadrature degree is defined as the maximum degree l of the Wigner-
D functions which can be exactly integrated over SO(3). It can be
shown that the sampling sets XT and XI define indeed quadrature
rules with equal weights and respective degrees degXT = 2 and
degXI = 5, see [8].

The strong connection between SO(3) and the sphere S2 leads
to a simple choice criterion for the rotation sampling set given the
bandlimit L of the reconstruction. Precisely, we consider that the
quadrature degree of the sampling set should be larger than the max-
imum degree in the spherical harmonic decomposition of the low-
resolution reconstruction, that is

degX ≥ L− 1. (17)

It is straightforward to see that for the first resolution L = 3 both
XT and XI fulfill the criterion (17), whereas only XI is available for
the second resolution L = 5. Since computation time is critical, for
L = 3 the rotation sampling XT set will be chosen.

4. RESULTS

Results are presented on an inner shell and a outer shell as depicted
in Fig. 1. As a reconstruction error metric, we use εl = (|Êl −
El|)/(El), where Êl and El are respectively the estimated and the-
oretical energy of degree l, defined by El =

∑l
m=−l |I

m
l |2. This

is a rotation invariant quantity. The true intensity function is com-
puted from the Bence-Jones protein structure (pdb entry: 1REI). To
avoid any bias the true intensity is computed on a large spherical grid
such that nside = 128. For each K, we simulate K uniform random
rotations Rk to obtain the sample points Ds

Rk
, and the measure-

ments yk are obtained by the Poisson model. The average behavior
of the algorithm is obtained by quasi-Monte Carlo method, and with
NMC = 100 runs.

In Figure 2, one can see the convergence of the estimation of the
SH coefficients for L = 3 and L = 5 as a function of the number of
patterns. For the inner shell, the relative error is low for l = 0, 2 in
both cases (nside = 1,XT ) and (nside = 2,XI ). The case l = 4 is
special (large error) but the relative contribution of this coefficients
is very low in the reconstruction. For the outer shell (Fig 2, bottom
row), convergence is achieved slowlier (due to sparse measurements)
and aliasing issues arising from an energy distribution much wider.
The aliasing phenomenon is actually univetable, and a consequence
of the sub-Nyquist sampling on the regular grid G.

Figure 3 presents reconstructions from the set of coefficients es-
timated in the case K = 400 observations, with a grid nside = 128.
One can see that orientation is not preserved as reconstruction is
performed independently on shells. As can be seen for L = 3 of the
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Fig. 2. Average relative error convergence with respect to the num-
ber of patterns for the inner and outer shell, for L = 3 (left) and
L = 5 (right).

Fig. 3. Inner and outer shell low-resolution reconstructions for L =
3, 5 and K = 400. Log-scale thresholded colormaps.

outer shell in Figure 3, SHT can lead to negative values in the re-
constructed intensity. This is a drawback of using SHT as intensity
should always be positive. As expected the low resolution estima-
tion fits quite well the theoretical inner shell, whereas more degrees
would be needed in the outer shell to obtain a good estimate.

One of the advantages of using the SHT also comes from the
oversampling at will (here we used nside = 128). It should allow
much more flexibility for phase retrieval algorithms to be performed
after intensity reconstruction.

5. CONCLUSIONS & PERSPECTIVES

Taking advantage of the symmetries of intensity functions can lead
to low-resolution estimator which is not tractable using the classi-
cal EMC technique used in single-particle imaging. The proposed
spherical version allows reconstruction of the intensity by successive
shells thanks to an efficient SHT representation and with the desired
resolution and the associated optimal size of grid. Future work will
consist in assembling the reconstructed shells which are subject to
relative rotations and to study alternate bases for the reconstruction.
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