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ABSTRACT

Choosing among competing models of collected data is crucial for

all sciences. In the last decade there has been an increasing tendency

to use Bayesian methods throughout many fields. When assessing

the performance of instrumental measures of speech quality, classi-

cal measures such as correlation coefficients are still used. While

these methods have their merits, they discard information about the

data distribution, such as variability. They are useful as absolute

measures of fit, but often not suitable for comparing different mod-

els. This paper uses Bayesian model selection, which does not suffer

from these shortcomings, as it takes all information about the dis-

tribution of data into account and yields easily interpretable model

probabilities. Two instrumental measures of speech quality are eval-

uated using data obtained in an absolute category rating (ACR) test.

The results are compared and discussed. Bayesian methods prove

superior for comparing instrumental measures, especially when the

correlation of both measures is either poor or nearly identical. The

proposed estimation procedure is highly recommended in selection

phases for standardization bodies such as ITU-T, ETSI, 3GPP.

Index Terms: Bayesian model selection, instrumental speech qual-

ity measures

1. INTRODUCTION

Speech quality estimation via instrumental measures has been sub-

ject of research for many years. The motivation is the replacement

of subjective listening tests, thus saving time and financial resources.

Most commonly, the employed instrumental measures are intrusive,

i.e., both, the reference speech signal (REF) as well as the coded

(processed) speech signal (PROC) are needed for the quality pre-

diction. This approach is also called full-reference signal-based

model. Well-known examples are the wideband perceptual evalu-

ation of speech quality (WB-PESQ) [1] algorithm and its succes-

sor perceptual objective listening quality assessment (POLQA) [2].

These two measures aim at modeling a subjective absolute category

rating (ACR) listening test [3, Annex B].

Simplified, these algorithms predict speech quality in three

steps. First, REF and PROC input signals are preprocessed in the

frequency domain according to an approximation of human percep-

tion, which, e.g., considers non-linear loudness perception. A time

(frame) and frequency (band) matrix ∆P = PREF − PPROC is cal-

culated, representing the perceptual difference due to transcoding.

In the second step, ∆P is integrated over time and frequency, lead-

ing to a single scalar value per utterance, which is then mapped in

the third step via a pre-trained linear regression to the mean opinion

score listening quality objective (MOS-LQO). The linear regression

coefficients are found using training material consisting of speech

signal pairs for REF and PROC in combination with the according

mean opinion score listening quality subjective (MOS-LQS) values,

obtained beforehand in subjective listening tests.

The absolute performance of an instrumental measure is often

given as Pearson’s correlation coefficient [4], which is a measure of

the similarity between MOS-LQO and MOS-LQS values, thus indi-

cating how well the instrumental measures approximate the subjec-

tive listening test. However, when comparing measures [5] or differ-

ent tunings from the same measure during development [6], a final

conclusion based on correlation coefficients might not be possible.

This is the case, if the compared correlation factors are very small, or

their values are very close to each other [7]. Even if the coefficients

diverge, interpretation of the significance of the difference between

the models is not intuitive.

This paper introduces Bayesian model selection (BMS) to com-

pare the predictions from different instrumental measures of speech

quality directly with each other based on easily interpretable poste-

rior model probabilities. An existing subjective listening test was

used in order to evaluate MOS-LQO values obtained from both WB-

PESQ and POLQA using BMS, which offers a framework for com-

paring models of measured data while taking inter- and intra-person

variability into account [8, 9]. These methods are applied in statis-

tics [10–12] and are proven as useful tools for model selection in

many applications [13], among them signal processing [14], ma-

chine learning [15], natural language processing [16], neuroimaging

[17, 18], social sciences [19], and biology [20, 21].

In this paper, correlation coefficients and posterior model prob-

abilities based on Bayesian estimation are assessed as measures for

model selection. The information contained in correlation coeffi-

cients and posterior model probabilities as well as the different views

on collected data inherent in typical test setups is discussed.

The paper is structured as follows: The next section provides

an introduction to Bayesian model selection and linear hierarchical

models. After presenting the experimental setup in Section 3 and

results in Section 4, conclusions are finally drawn in Section 5.

2. BAYESIAN MODEL SELECTION USING POSTERIOR

MODEL PROBABILITIES

To compare different instrumental measures which yield MOS-LQO

values with the obtained MOS-LQS values a general linear hierar-

chical model is used in the form of parametric empirical Bayesian

(PEB) schemes1. In this section, posterior model probabilities used

for Bayesian model selection (BMS) are derived. A detailed specifi-

cation of the employed hierarchical model is given later on in Section

3.3.

1The implementation of the PEB schemes is freely available in the statis-
tical parametric mapping (SPM) software (spm PEB.m) [9, 22].
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P(m|y) 0.50 - 0.75 0.75 - 0.95 0.95 - 0.99 >0.99

Significance weak positive strong very strong

Table 1. Significance of posterior model probabilities [8, 23].

Empirical Bayes models equip a general linear model with fur-

ther hierarchical levels that place constraints on the parameters of the

lower levels. An expectation maximization algorithm estimates all

unknown model parameters to calculate the variational free energy

F which consists of an accuracy and a complexity term [22–24].

Fm is a lower bound on the marginal log-likelihood or log-evidence

ln(p(y|m)), with p(y|m) being the likelihood of the data y (MOS-

LQS values) given the model m ∈M = {WB-PESQ, POLQA} to

compute the MOS-LQO. The evidence is approximated using this

lower bound by p(y|m)≈eFm [13].

Given the model likelihoods p(y|m), the models m ∈ M can

be compared via posterior model probabilities P(m|y) which are

calculated following Bayes’ theorem

P(m|y) =
p(y|m)P(m)
∑

µ∈M

p(y|µ)P(µ)
, (1)

with P(m) being an a priori model probability [13]. Assuming that

all models are equally probable a priori, (1) is simplified to

P(m|y) =
p(y|m)
∑

µ∈M

p(y|µ)
≈

eFm

∑

µ∈M

eFµ
. (2)

Table 1 gives an overview on how to interpret the significance of

posterior model probabilities. Values larger than 0.5 reflect evidence

in favor of model m, with values larger than 0.95 being considered

as ‘strong’, and 0.99 as ‘very strong’ evidence [8, 23].

3. EXPERIMENTAL SETUP

In this section a brief description of an example ACR listening test

setup is given, followed by the evaluation strategy. Finally, we intro-

duce the linear hierarchical model and provide a detailed specifica-

tion of the required design matrices for Bayesian model selection.

3.1. An Example ACR Listening Test Setup

A typical ACR listening test was used as basis for the experiments.

The test will now be sketched, a detailed description can be found

in [25]. Several algorithms for artificial speech bandwidth exten-

sion (ABE) served as test objects, but keep in mind: Our particu-

lar focus in this paper is not to find out, which of the these ABE

algorithms performs best, but which of the models m ∈ M =
{WB-PESQ, POLQA} provides the best predictions for the MOS-

LQS.

Speech data for the listening test was taken from the German

part of the NTT-AT database for telephonometry [26]. Two fe-

male and two male speakers were selected, each speaker providing

four sentences. The subjects were asked to give an absolute rat-

ing scale in MOS-LQS from 1 (bad) to 5 (excellent) for every file.

In the listening test C = 16 conditions c ∈ CALL = {1, . . . , C}
were presented to L = 24 subjects: one coded narrowband (NB)

(CAMR-NB = {1}), six ABE (CABE = {2, . . . , 7}), three coded wide-

band (WB) (CAMR-WB = {8, 9, 10}), and six WB modulated noise

reference unit (MNRU) [31] conditions (CMNRU={11, . . . , 16}).

One out of the four utterances per speaker was used during a pre-

liminary familiarization phase, leaving a total of N = 12 sentences

per condition. In total C ·N = 192 files were evaluated in the ACR

test.

Speech data sampled at 16 kHz was selected for all conditions.

For the NB condition, the speech data was decimated using a FLAT1

filter with 3.6 kHz cutoff frequency [27] and the adaptive multi-

rate NB (AMR-NB) speech codec [29] was applied at a bitrate of

12.2 kbps. This NB condition also serves as input to the six dif-

ferent ABE algorithms. Coded WB conditions were obtained by

transcoding the input speech via the adaptive multirate WB (AMR-

WB) speech codec [30] at bitrates of 8.85 kbps, 12.65 kbps, and

23.85 kbps. The remaining six WB conditions were generated by

using the MNRU with speech to modulated noise power ratios of

∞ dB (clean), 45 dB, 35 dB, 25 dB, 15 dB, and 5 dB. Detailed test

results are discussed in [25] but are not of particular interest here.

3.2. Evaluation

In order to compare correlation coefficients to the outcome of

Bayesian model selection, a file-based evaluation has to be done. To

obtain subjective votes on file-basis, it is necessary to average over

the different subjects ℓ ∈ L= {1, . . . , L} for each condition c and

sentence n following

yc,n =
1

|L|

∑

ℓ∈L

yc,n,ℓ, n ∈ N ={1, ..., N},

which eliminates inter-person variance, with |L|=L being the num-

ber of subjects. The MOS-LQO values xc,n which correspond to the

resulting yc,n are calculated using WB-PESQ and POLQA. While

the different conditions constitute the PROC cases, the respective

WB MNRU with ∞ dB modulated noise power ratio is the REF

case. POLQA operates in superwideband (SWB) mode, therefore

the speech files have been interpolated to 32 kHz sampling rate in

advance.

For evaluation, the C = 16 conditions were clustered into the

five group sets Cg with g ∈ G={ALL,AMR-NB, ABE, AMR-WB,

MNRU}. The file-based correlation coefficient [4, 34]

rg=

∑

c∈Cg

∑

n∈N

(

xc,n−x
)(

yc,n−y
)

√

(

∑

c∈Cg

∑

n∈N

(

xc,n−x
)2
)(

∑

c∈Cg

∑

n∈N

(

yc,n−y
)2
)

, (3)

with x and y denoting the global mean of all MOS-LQO and MOS-

LQS values, respectively, was calculated for every group set Cg . The

root-mean-square error (RMSE) between xc,n and yc,n is also cal-

culated for each group set Cg .

3.3. Hierarchical Linear Model

In the following, we give an introduction to the linear hierarchi-

cal model as used here for Bayesian model selection and a detailed

specification of the design matrices and data vectors, which are re-

quired to calculate the model evidence Fm in (2). The different mod-

els (WB-PESQ, POLQA) generate the model-specific MOS-LQO

values as regressors xn,ℓ, with the subscript ℓ denoting the individ-

ual test subjects and n being the consecutive index of the sentences

which were actually presented to a subject within one test condition

c. The condition index c is omitted in the general description of the

hierarchical model for better readability: it actually applies to all

variables until eq. (6). The first level of the hierarchical model as-

sumes the MOS-LQS values yn,ℓ to be directly proportional to the

MOS-LQO values xn,ℓ with the unknown parameter θ
(1)
ℓ and error

ǫ
(1)
n,ℓ

yn,ℓ = xn,ℓθ
(1)
ℓ + ǫ

(1)
n,ℓ, (4)
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with superscript (j) denoting the level j ∈J = {1, 2, 3}. Note that

the first level (4) models no deterministic offset as both WB-PESQ

and POLQA are specifically designed to directly substitute the ob-

tained MOS-LQS. The second level models the subject-specific pa-

rameters θ
(1)
ℓ as deviations from a group parameter θ(2)

θ
(1)
ℓ = θ

(2) + ǫ
(2)
ℓ . (5)

The third level specifies no prior knowledge for the group parameter

θ(2)=ǫ(3) [9]. In the following, non-bold letters refer to scalars, bold

small letters to (column) vectors, and bold capital letters to matrices.

In this notation the complete general hierarchical model is

y = X
(1)

θ
(1) + ǫ

(1)

θ
(1) = x

(2)
θ
(2) + ǫ

(2)
(6)

θ
(2) = ǫ

(3)
.

For evaluation of the groups g ∈ G, the respective sets of

conditions Cg, with Cg = |Cg| being the number of con-

ditions in group g, yield the respective data vector yg ∈
R

CgNL according to yg = [yT
g,ℓ=1, ...,y

T
g,ℓ=L]

T , with yg,ℓ =

[ycg,min,n=1,ℓ, ..., ycg,min,n=N,ℓ, ..., ycg,max,n=N,ℓ]
T ∈ R

CgN and

( )T being the transpose. Here, cg,min and cg,max denote min(c)
and max(c) with c ∈ Cg , respectively. The first level design ma-

trix X
(1)
g ∈ R

CgNL×L is block-diagonal with L partitions xg,ℓ =
[xcg,min,n=1,ℓ, ..., xcg,max,n=N,ℓ]

T ∈ R
CgN containing the MOS-

LQO values of one subject ℓ.

The second level design matrix X(2) = x(2) = 1L is an all-

one column vector of length L, expressing that the subject specific

parameters θ
(1)
ℓ are deviations of a single subject-independent group

parameter θ(2) (5). For well-fitted models, the group parameter θ(2)

should be close to one. Technically, the third level contains a design

matrix which is set to the scalar value of zero X(3)=x(3)=0. Notice

that the vector y and matrices X(1), X(2), and X(3) form the only

model-specific input to the PEB method [9, 22] for estimating the

unknown parameters and calculating Fm for use in (2).

The parameter vector θ(1) = [θ
(1)
ℓ=1, ..., θ

(1)
ℓ=L]

T ∈ R
L assem-

bles the unknown level-one parameters θ
(1)
ℓ , which are the link be-

tween MOS-LQO and MOS-LQS (4). All parameters are treated

as multivariate random Gaussian variables with posterior densities

N (θ(j);µ
(j)
θ|y,Σ

(j)
θ|y). The conditional means of these densities µ

(j)
θ|y

are used as point estimates of the parameters θ(j) [9]. All errors

are assumed to be normally distributed ǫ(j) ∼ N (0,Σ
(j)
ǫ ). The

covariance is parameterized by the hyperparameters λ(j) following

Σ
(j)
ǫ = λ(j)I(j), with covariance constraint I(j) being an identity

matrix with the same dimensions as the number of rows of the design

matrix X(j) of the corresponding level j. The unknown parameters

θ(j) and hyperparameters λ(j) are estimated using an expectation

maximization algorithm.

3.4. Parametric Empirical Bayes Computation

Given the data vector y and design matrices X(j) for all levels j∈J
along with the error covariance constraints I(j) from Section 3.3,

the parameter estimates µ
(j)

θ|y, error covariance matrices Σ
(j)
ǫ , and

model evidence Fm are calculated based on expectation maximiza-

tion by the PEB scheme: [µ
(J )
θ|y ,Σ

(J )
ǫ , Fm] = PEB(y,X(J ), I(J )).

The obtained Fm for all m ∈ M are used for calculating the pos-

terior model probabilities P(m|y) after (2), which allows for direct

Bayesian model selection following Table 1.
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Fig. 1. Detailed scatter plot of WB-PESQ ( ) and POLQA ( )

sorted by obtained MOS-LQS from MOS-LQS = 5 (top panel) down

to MOS-LQS = 1 (bottom panel).

4. EXPERIMENTAL RESULTS

Figure 1 shows a detailed scatter plot of MOS-LQO values obtained

from WB-PESQ ( ) and POLQA ( ) over conditions, sorted by the

obtained MOS-LQS values. Once a file gets different scores from

different subjects, it consequently appears in more than one of the

subplots. Especially for MOS-LQS values between 2 and 5, similar-

ities in the plots are apparent that prove high inter-person variability

over most of the conditions. Throughout all plots, MOS-LQO values

from POLQA are higher than those from WB-PESQ.

In Figure 2 the file-based MOS-LQS values yc,n for c ∈ CALL

are plotted over the corresponding MOS-LQO values xc,n from WB-

PESQ ( ) and POLQA ( ). As in Figure 1 systematically higher

scores are given by POLQA. Additionally, a strong linear depen-

dency is suggested.

Table 2 shows posterior model probabilities P(m|y) after (2),

correlation coefficients rg after (3), second-level parameters θ(2)

(5), and RMSE values for WB-PESQ and POLQA for all groups

g ∈ G. High correlation coefficients of rALL = 0.90 for WB-PESQ

and rALL =0.89 for POLQA for the group set CALL confirm the over-

all impression from Figure 2. However, posterior model probabili-

ties clearly state that WB-PESQ predicts MOS values of this subjec-

tive test better than POLQA, with P(m=WB-PESQ|y)>0.99, i.e.,
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m=WB-PESQ m=POLQA

Condition group set Cg P(m|y) rg θ(2) RMSE P(m|y) rg θ(2) RMSE

CALL >0.99 0.90 0.98 0.40 <0.01 0.89 0.86 0.68

CAMR-NB 0.51 0.31 0.95 0.31 0.49 0.24 0.82 0.68

CAMR-WB >0.99 0.21 1.07 0.51 <0.01 0.08 0.93 0.54

CABE 0.65 0.08 0.98 0.29 0.35 0.09 0.82 0.71

CMNRU >0.99 0.96 0.92 0.45 <0.01 0.94 0.85 0.70

Table 2. Comparison of posterior model probabilities P(m|y) (2), correlation coefficients rg (3), group parameters θ(2) (6) of the hierarchical

model, and root-mean-square error (RMSE) for WB-PESQ and POLQA. Values are shown for all condition group sets.

very strong statistical significance. Notice that due to the high corre-

lation coefficients, both measures prove to represent human percep-

tion well in absolute terms.

POLQA tends to overestimate speech quality (as shown in Fig-

ures 1 and 2) which is also expressed in θ(2)= 0.86< 1. WB-PESQ

for this test proves to be more accurately mapped towards the MOS-

LQS scale, with θ(2) = 0.98 ≈ 1. This result is confirmed by a sig-

nificantly lower RMSE for WB-PESQ (0.40) compared to POLQA

(0.68).

Table 2 also shows the results for the other groups of conditions.

With respect to coded WB group set CAMR-WB, Bayesian model selec-

tion (BMS) puts WB-PESQ in favor of POLQA. This is confirmed

by the significant difference of the correlation coefficients of 0.21

for WB-PESQ and 0.08 for POLQA. However, both measures have

low correlation coefficients and are therefore not able to accurately

predict MOS-LQO values for these conditions. Interestingly, WB-

PESQ slightly underestimates the MOS-LQS values in these condi-

tions, as revealed by θ(2) = 1.07 > 1, while POLQA overestimates

the MOS-LQS with θ(2) = 0.93 < 1. The size of underestimation

by WB-PESQ and overestimation by POLQA is about equal, which

is directly mirrored in the similar RMSEs of 0.51 and 0.54, respec-

tively. Regarding the coded NB speech group set CAMR-NB, neither

WB-PESQ nor POLQA (in SWB mode) have high correlation coef-

ficients and BMS states about equal posterior model probability for

WB-PESQ and POLQA. The differences of the parameters θ(2) are

again directly mirrored by the RMSE.

The six ABE conditions CABE are poorly represented by both

instrumental measures. Correlation factors are rABE = 0.08 and

rABE = 0.09 for WB-PESQ and POLQA, respectively. A posterior

model probability of P(m = WB-PESQ|y) = 0.65 signifies only

weak statistical evidence in favor of WB-PESQ. Significant differ-

ences between θ(2) and the RMSE strengthen the overall impression

of a close relationship between these two values.

For WB MNRU conditions CMNRU, WB-PESQ and POLQA

show very high correlation factors of rMNRU = 0.96 and rMNRU =
0.94, respectively. Even though these correlation coefficients are

very similar, BMS clearly favors WB-PESQ with a posterior model

probability of P(m = WB-PESQ|y) > 0.99! The parameter θ(2)

is closer to one and the RMSE is smaller for WB-PESQ than for

POLQA, thus confirming the results obtained via posterior model

probabilities.

5. CONCLUSIONS

This paper introduces Bayesian model selection (BMS) for the eval-

uation of instrumental measures of speech quality. Further, pos-

terior model probabilities are compared to correlation coefficients

with regard to their explanatory power and the relationship between

Bayesian parameter estimates and the RMSE is investigated. As an
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Fig. 2. Detailed scatter plot of WB-PESQ ( ) and POLQA ( ) over

file-based mean MOS-LQS for group set CALL.

example, WB-PESQ and POLQA serve as models for data obtained

in an absolute category rating test. Although the results from BMS

and correlation are qualitatively identical, there is a tremendous dif-

ference in statistical significance. Specifically, in conditions with

high and nearly identical correlation coefficients, posterior model

probabilities state very strong evidence in favor of WB-PESQ vs.

POLQA. For some conditions, however, the correlation coefficients

are small but different and BMS states only weak superiority of WB-

PESQ. The RMSE confirms the results of the BMS and the differ-

ences in RMSE directly mirror the Bayesian parameter estimates.

As absolute measures of fit, a correlation coefficient and the

RMSE serve their purpose very well by directly relating objective

to subjective mean opinion scores. However, if speech codecs or in-

strumental measures of speech quality need to be compared, e.g. in

a selection phase of a standardization body such as ITU-T, ETSI or

3GPP, the correlation fails, since it only takes mean scores into ac-

count and is therefore blind to intra- and inter-subject variability. By

using Bayesian model selection, these variabilities are considered,

thus leading to more meaningful and significant comparisons. Fur-

thermore, Bayesian parameter estimates indicate systematic errors

due to offsets which cannot be directly seen in the RMSE values.
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