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ABSTRACT

Most of the objective measures employed for speech intieillity

prediction require a clean reference signal, which is noessible
in all realistic scenarios. In this paper, we propose toyratesize
the relevant features of the clean signal using only theyrepgech
signal and utilize them inside an intelligibility predioti framework
which requires a reference. A statistical model called thiatden

Markov model (THMM) is used to synthesize the clean speeah fe

tures. For the intelligibility prediction framework, théart-time
objective intelligibility (STOI) measure is used as an aatel and
well-known method. The experimental results show a highetar
tion between the twin-HMM-based STOI (THMMB-STOI) and the
human speech recognition results, even slightly outperifty the
conventional STOI predictions computed using the actiedrelref-
erence signals.

Index Terms— Speech intelligibility prediction, twin HMM,
non-intrusive method, objective measures

1. INTRODUCTION AND RELATION TO PRIOR WORK
Speech intelligibility is a measure assessing in how fareesp sig-
nal is recognizable. The most reliable way to estimate thantjty
is to conduct intelligibility tests with the help of humarsténers.
However these tests are time consuming and costly. Thexgfwre
have been many efforts in the last decades to automaticstilypate
this measure.

Some early introduced and widely-known intelligibility me
sures include the articulation index (Al) [1], the speedklifgibility
index (Sll) [2], and the speech transmission index (STI) [Bhese
measures have been reported to have an acceptable accutacy b
a limited number of degradation types like linear filterimgladdi-
tive noise. Later, in order to cope with more complex disoos,
new methods like the speech-based envelope power spectode m
(EPSM) [4] were introduced. Also, the short time objectineelli-
gibility (STOI) measure [5], and the mutual information edJ6]
methods have been proposed more recently.

All of the aforementioned measures and also the majorithef t
published models so far, fall into the category of intrusivethods,
which means that they need a clean reference signal to estthra
intelligibility of the corrupted signal. Since the cleamsal is not
available in all situations, the requirement to access éfierence
signal would be a severe limitation for an intelligibilityqaliction
algorithm. Thus, non-intrusive methods have been intredun or-
der to estimate the intelligibility without a need for theeah sig-
nal. For example, speech-to-reverberation modulatiomggnetio
(SRMR) [7] is a non-intrusive method, which computes thelligi-
bility of reverberated speech. This measure assumes thiat lnod-
ulation bands are carrying the speech signal and the higieash
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Fig. 1. Concept of twin HMMs.

contain the room acoustic information such as reverbaratitow-
ever, the SRMR method is limited to the assessment of rexateze
speech signals and is not suitable for other types of detjoada

Low cost intelligibility assessment (LCIA) [8, 9] is anotheon-
intrusive framework, which uses frame-based speech feaixirac-
tion and selection methods in combination with Gaussianturex
models (GMMs) for prediction. In [10] a joint acoustic andoplo-
logical framework has been suggested to predict the speeeki-i
gibility non-intrusively. The authors use an auditory-rabtased
feature extraction along with a hybrid speech model to amthe
need for a clean signal.

The above methods use clean generative or discriminatice mo
els to estimate the intelligibility from a degraded speedgha. The
clean models are trained on clean data during an off-linsg@hin
this current work, we also propose to use a statistical-frbaleed
approach, but not to extract the intelligibility measureedily. We
propose instead to synthesize the relevant features ofi¢he sig-
nal using the statistical model trained on clean data. Thersyn-
thesized features can be used inside any intrusive frankei@opre-
dicting the intelligibility. This is the main difference tveeen the cur-
rent work and the previously proposed non-intrusive methdche
proposed method is not limited to the intelligibility esttion pro-
cedure that we used and can be integrated in any intrusivieoghet
Therefore the proposed method can take advantage of aeaurdt
reliable intrusive methods and predict intelligibility thout requir-
ing the clean signal.

The twin hidden Markov model (THMM) [11, 12] is a statisti-
cal model which was previously applied to speech signal ecéra
ment. The main concept of twin HMMs is presented in Figure 1.
Here, we propose to use this model for obtaining clean feat(in-
stead of clean speech) out of a degraded speech signal. Téey a
needed inside an intrusive framework to predict the irgllity.
THMMs can be optimized for synthesizing specific clean sheec
features while other simple speech enhancement methaelshiék
Wiener filter or spectral subtraction do not have this cdfgbiThe
results show a strong correlation between the predictedigibility
and the human recognition accuracy.

The remainder of this paper is organized as follows: In $a@j
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Fig. 2. Framework of speech intelligibility prediction using twhidden Markov models.

the general concept of THMMs is introduced and the basicttra
of our framework is described. Section 3 gives a detailedaeep
tion of all experimental settings and analyzes the reshltslly the
conclusions are presented in Section 4.

2. TWIN-HMM-BASED INTELLIGIBILITY PREDICTION

The idea of using twin HMMs (THMMSs) in predicting speech inte
ligibility is a general approach. THMMs can be integratetbithe
framework of other intrusive intelligibility predictorsiorder to esti-
mate the relevant clean features from the noisy test sidras is a
notable advantage of the proposed method over other norsive

intelligibility prediction, which are explained in detai the follow-
ing paragraphs.

In the first phase, the standard expectation maximizatidn) (E
algorithm is used to train a THMM set. Using the iterative Elgioa
rithm and the REC features, the recognition output densitgtions
of the THMM set are learned. In the last iteration, the octiopa
probabilities of all states over time, are stored for later computa-
tions. The training procedure of the synthesis output dgrighc-
tions accumulates the SYN features weighted with the stpifeaim
the final iteration of the REC distribution training.

In the alignment phase, the REC features are extracted frem t
noisy speech signal. Then, the features along with thedrgoi®n

ones. The new approach can work in combination with manyrothea(a are fed into a forced alignment system. In this systesrveafd-

intelligibility prediction methods and compensate theiolgem of
requiring the clean reference signal. To implement our,ideshave
chosen the STOI [5] algorithm as the intelligibility pretite mea-
sure in this paper. It has been shown in several studiesitb&TOI
is a reasonable predictor of intelligibility and it is cuntly in wide

use [6,9,13,14].

2.1. Twin Hidden Markov Models (THMMSs)
As can be seen in the conceptual representation of the twiMBsIM

backward algorithm is used to estimate the state occupatiolba-
bilities v per time frame. The REC distributions trained during the
first phase are used in this estimation process. Using thedri@-
tion data and employing a forced alignment algorithm leadshigh
accuracy of the estimategdmatrix.

In the third and last phase, at first the relevant clean featur
are synthesized in order to be used in the intelligibilitggiction
step. The synthesized features are thus obtained in the 8atre
domain, which is the one-third octave frequency band heree T

in Figure 1, there is only one state sequence in a THMM. HoweveDFT-based one-third octave band decomposition is alsdesbjb

each state is associated with two output density functi@i3F);
one for recognition and one for synthesis. The state sequenre-
sents the temporal evolution of speech. The recognition O&E
trained using recognition features (REC features) andyhthssis
ODFs are trained using synthesis features (SYN featuré$)Ms
have been introduced in order to use ASR systems for syathgs.
cleaner version of a speech signal and for speech enhantennen
REC features, which are appropriate for maximizing the ged@n
accuracy, are used in the THMM framework to decode the bat st
sequence [11]. Then the decoded state sequence in corohinatih
the synthesis ODFs is used to synthesize a clean referegre.si

2.2. THMM-based STOI

Figure 2 shows the global scheme of the proposed framewdris. T
approach is composed of three main phases; training, aighrand
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the noisy speech signal. Later, the extracted noisy featogether
with the synthesized clean features are used inside the-Basad
intelligibility estimation block to estimate the intelllglity measure
called THMMB-STOI. This last block implements short-timegs
mentation, normalization, clipping, and correlation cangtion be-
tween its two inputs, exactly as described in the STOI algori[5].
To synthesize the clean signal in this phase, the synthesis o

put density distribution learned in the training phase, tralstate
occupation probability obtained in the alignment phaseuaesl. In
fact the mean of the SYN distribution in each stafeiE"|q; = 1]

is weighted by the occupation probability of the same skte. =

i|xRE%) and summed over all states to obtain the synthesiggd'}:

N
™ = ST ECS Mg = i)Plar = ifxF). (1)
i=1
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Fig. 4. Scatter plot of the conventionally estimated STOI measure
against the THMMB-STOI measure.

utterances from the original Grid corpus. This part alsot@os
results of listening tests conducted by Jon Barker at therdysity
of Sheffield with 20 listeners at each SNR. The sentenceitid
database comprise six words, following the structure: eeibr-
preposition-letter-digit-adverb. However, in the listentests, the
listeners were only asked to recognize the words in theipasiof
color, letter, and digit. The speech signals at each SNR haea
Fig. 3. 1/3 octave band representation of (a) the clean Grid sentivided randomly into training (80 %), development (10 %l aest
tence "lay blue by u 7 soon", (b) the same signal synthesigtja  sets (10 %) for the following experiments. Also the clearsier
THMM, and (c) the corresponding distorted signal at 0 dB SNR.  of the files from each of these sets have been collected tdecrea
the equivalent clean training, development and test sdtsceSve
are proposing to synthesize the clean relevant intelligitfieatures
Here, N is the number of states,is the frame index and; is the  using the noisy signal and considering the fact that the atz4@ dB
state at time index. SNR can almost be considered clean, this SNR was excludée in t
As mentioned earlier, THMMs were primarily introduced for following experiments.
speech enhancement inside an audio-visual speech reoogsys-
tem. However, there are main structural differences betwleecur- 3.2. Experimental setup
rent framework and the THMM-based speech enhancementsyste
The proposed method utilizes the transcription infornratitstead
of the automatic speech recognition output to decode thecspson-
tent of the signal. Besides, the speech enhancement systemeas
both audio and video signals as input and uses a combinatitne o
synthesized and the enhanced signals to produce its ougjmat.slt

02 04 06 08 1 1.2 14 1.6
Time [s]

In order to obtain a consistent framework with comparab#ilts,
all common feature extraction parameters (like frame lengnhaly-
sis window type, etc.) have been selected as suggested 8Tbé
framework [5]. This also applies to the frequency samplifighe
speech signals, which have been down-sampled fiom 25 kHz to
. 10 kHz. The REC features are standard mel frequency cepseél
also must be noted that in our proposed method, the relelean c ficients (MFCCs), which are being used widely in automatiecgh

features are synthesized instead of the clean speech.signal recoanition tasks. These features are 39-dimensionabrEaom-
Figure 3 shows the one-third octave band representation of & 9 o ) X e
noisy signal at 0 dB SNR and its equivalent clean and syrbdsi posed of the first 13 static MFCCs and their corresponding(fx$

versions. One can observe that the clean version of the sijsl and second time derivativeA\). According to the selected intel-

has been retrieved very well using the THMM approach andliaén Lﬁ'}g“&{;\?:%gﬁa V;,:I(:rre]slzrg?:tiil?)lf’ ttt:]ee ;le:laﬁzu:;isgrz?r%]:;%
with its actual clean counterpart. In Figure 4 the estimatdtMB- P 9

STOI has been plotted versus the conventional STOI. Thesstse IQ;%%IE?LUJESST?;? rr112;slumrgnsllzoe?carl \v/focrtgr;’ %vgé%rl]elgts;isrﬁ;dzﬁinear
have been computed over al! SNRs using_ the test data set. -As eféft-to-right HMM. Therefore.we have 51 whole-word HMMs and
pecteq, a strong and almost linear correlation betweenvtbertea- one silence model in each HMM set. The number of states has bee
sures is observable. chosen as three times the number of phonemes of the word. A 2-
and 1-mixture diagonal covariance GMM is used for modelimg t

3. EXPERIMENTS AND RESULTS state distribution of recognition and synthesis HMMs resipely.
For recognition we trained noise-dependent models usaigitg
3.1. Data set set data at each SNR separately and evaluated the accurdgsef

éﬂodels with development sets. However, for synthesis, zeusal

In this study, the Grid corpus [15] has been used as the spee CH an model was used for all conditions.

database. The original corpus contains 34000 clean spetsh u
ances in total. In addition to the original data, there i® @soisy 3.3. Results

version of the corpus at 12 different SNRs in the range frordaln

to -14 dB. At each SNR, there are in total 2000 noisy speecatatsg In the following experiments, the performance of the olyeciea-
created by adding speech shaped noise (SSN) to the cleachspesures is being compared to the human speech recognitiomaagcu
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predicting the intelligibility with relatively high accacy and with-

0.8 out having the clean reference signal. However, there in@eased
’ computational complexity in the proposed method. Runningao
0 0.6 standard PC (Intel(R) Core(TM) i5-4570 CPU @ 3.20 GHz, 8 GB
Q memory) with Windows 10 and Matlab 2015a, the processing tim
=04 was 1.92 s on average for a speech signal of 1.76 s averadh.leng
0.2 [ Data points o )
— Mapping function Table 1. Performance of objective measures in terms of NCC (%),
0 i i i : : : : i RMSE, and Kendall's Taur( %) between objective measures and
0 0.1 0.2 03 04 SO.(53 06 07 08 09 1 listening test results (WCS)
TOI
1 (b) Measure NCC (%) | RMSE | 7 (%)
S R R STOI 93.55 0.092 | 74.52
0.8 THMMB-STOI | 9357 | 0.091 | 74.38
» 0.6
g 04 Table 2. RMSE between mapped objective measures and listening
’ i test results in different SNRs
0.2 AT ‘ Data points
—__ Mapping function [ SNR(dB) [| STOI | THMMB-STOI |
%0 01 02 03 04 05 06 07 08 00 1 1; 8-122 8-%‘7’2
THMMB-STO! -10 0.109 0.111
Fig. 5. Scatter plots of (a) the conventionally estimated STOl-mea 8 0.153 0.149
sure and (b) the THMMB-STOI measure against the word correct S 0.086 0.099
scores (WCS), and the corresponding trained logistic fanst ) 0.052 0.052
-2 0.060 0.064
which is stated as the word correct score (WCS). This stibsgect 0 0.046 0.043
measure is computed by dividing the number of correctlygaczed 2 0.038 0.034
keywords by the total number of keywords.The reported WQG8 he ) 0.037 0.032
was averaged over ten files. Similarly, the results of theaibje 6 0.039 0.034
measures, e.g. STOI, were also computed over the same tn file | Al || 5092 | 5001 |

In order to evaluate the performance of the intelligibilihea-
sures, three different figures of merit have been used: raznm
square error (RMSE), normalized cross-correlation cdefiic

(NCC), and Kendall's Tau coefficient) [5, 6] The first two per-  \e have proposed a solution to allow the use of intrusive cpee
formance measures are valid only when their input variahée® & intelligibility prediction algorithms in situations whethe reference

linear relationship. Thus, we used a sigmoid mapping fonctind  gignal is not accessible. The proposed method is based dnesyn
the logistic regression method to linearize the relatigndletween sizing the clean features by means of twin HMMs. This statist
the m_achine-derived and the human listening results (WT8. 5| model gives us the freedom to choose the synthesis ématior
mapping procedure has been performed exactly based on [6].  ¢qrding to the intelligibility prediction method that is igg to be
The mapping functions derived for the STOI and the THMMB-ysed. After linearization, the predicted intelligibilitising synthe-
STOl along with the test data are shown in Figure 5. The fonsti  sjzed clean features shows a strong correlation with hurasmahd
have been derived separately for each intelligibility neasising  agrees with the intelligibilities computed with actualeefnce fea-
the development data over all SNRs. As can be seen in Figtie 5, tures. This method can be integrated into the framework afyma
test data appears to fit the mapping function. In Table 1 theracy  other intelligibility prediction measures and can proviyathesized
of the proposed measure (THMMB-STOI) as well as the convenclean reference features, which is a requirement in inteusieth-
tional STOI (STOI) are presented. The results have beene@dp ods. To synthesize the clean features in this work, trapisoni data
as an overall accuracy using the test data from all SNRs.erad@-  was used. Speech shaped noise was utilized to evaluate Grithe
ues of NCC and Kendall's Tau] show higher correlation between database, which possesses a specific sentence structese félts
the objective measures and the human performance, whicke€on indicate a direction for future work, namely making THMMs rao
quently means higher accuracy in predicting the intelli@ib In  jndependent of extra data and more flexible with respectetdabk
contrast, lower values of RMSE represent a higher accurbtlyeo  while keeping their accuracy high.This can likely be achibby

intelligibility prediction methods. It can be clearly sedmat t_he pro- training THMMs on large-vocabulary corpora of speech sigjrend
posed method (THMMB-STOI) has a good performance in terms ofarrying out speaker adaptation during test time.

all evaluation measures, and is comparable to the convet&rOl.
Table 2 shows the prediction errors of the STOI and the THMMB- 5. ACKNOWLEDGMENTS
STOI in each SNR separately. As it was expected, the RMSE of
both prediction methods decreases (improves) as the SN®ages. This research has received funding from the European Usion’
However, there are some inconsistencies between some JF¢Rs. Seventh Framework Programme FP7/2007-2013/ under REA gran
example, while the SNR improves from -14 to -12 dB, the RMSEagreement #{{317521]. The authors would like to thank Jon Barker
value increases for both intelligibility measures. for providing a noisy version of the Grid database with cosimgn-

In total, the proposed THMM-based method was successful iive listening test results.

4. CONCLUSIONS
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