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ABSTRACT

Most of the objective measures employed for speech intelligibility
prediction require a clean reference signal, which is not accessible
in all realistic scenarios. In this paper, we propose to re-synthesize
the relevant features of the clean signal using only the noisy speech
signal and utilize them inside an intelligibility prediction framework
which requires a reference. A statistical model called twinhidden
Markov model (THMM) is used to synthesize the clean speech fea-
tures. For the intelligibility prediction framework, the short-time
objective intelligibility (STOI) measure is used as an accurate and
well-known method. The experimental results show a high correla-
tion between the twin-HMM-based STOI (THMMB-STOI) and the
human speech recognition results, even slightly outperforming the
conventional STOI predictions computed using the actual clean ref-
erence signals.

Index Terms— Speech intelligibility prediction, twin HMM,
non-intrusive method, objective measures

1. INTRODUCTION AND RELATION TO PRIOR WORK

Speech intelligibility is a measure assessing in how far a speech sig-
nal is recognizable. The most reliable way to estimate this quantity
is to conduct intelligibility tests with the help of human listeners.
However these tests are time consuming and costly. Therefore, there
have been many efforts in the last decades to automatically estimate
this measure.

Some early introduced and widely-known intelligibility mea-
sures include the articulation index (AI) [1], the speech intelligibility
index (SII) [2], and the speech transmission index (STI) [3]. These
measures have been reported to have an acceptable accuracy but in
a limited number of degradation types like linear filtering and addi-
tive noise. Later, in order to cope with more complex distortions,
new methods like the speech-based envelope power spectrum model
(EPSM) [4] were introduced. Also, the short time objective intelli-
gibility (STOI) measure [5], and the mutual information based [6]
methods have been proposed more recently.

All of the aforementioned measures and also the majority of the
published models so far, fall into the category of intrusivemethods,
which means that they need a clean reference signal to estimate the
intelligibility of the corrupted signal. Since the clean signal is not
available in all situations, the requirement to access the reference
signal would be a severe limitation for an intelligibility prediction
algorithm. Thus, non-intrusive methods have been introduced in or-
der to estimate the intelligibility without a need for the clean sig-
nal. For example, speech-to-reverberation modulation energy ratio
(SRMR) [7] is a non-intrusive method, which computes the intelligi-
bility of reverberated speech. This measure assumes that lower mod-
ulation bands are carrying the speech signal and the higher bands
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Fig. 1. Concept of twin HMMs.

contain the room acoustic information such as reverberation. How-
ever, the SRMR method is limited to the assessment of reverberated
speech signals and is not suitable for other types of degradations.

Low cost intelligibility assessment (LCIA) [8,9] is another non-
intrusive framework, which uses frame-based speech feature extrac-
tion and selection methods in combination with Gaussian mixture
models (GMMs) for prediction. In [10] a joint acoustic and phono-
logical framework has been suggested to predict the speech intelli-
gibility non-intrusively. The authors use an auditory-model-based
feature extraction along with a hybrid speech model to overcome the
need for a clean signal.

The above methods use clean generative or discriminative mod-
els to estimate the intelligibility from a degraded speech signal. The
clean models are trained on clean data during an off-line phase. In
this current work, we also propose to use a statistical-model-based
approach, but not to extract the intelligibility measure directly. We
propose instead to synthesize the relevant features of the clean sig-
nal using the statistical model trained on clean data. Then the syn-
thesized features can be used inside any intrusive framework for pre-
dicting the intelligibility. This is the main difference between the cur-
rent work and the previously proposed non-intrusive methods. The
proposed method is not limited to the intelligibility estimation pro-
cedure that we used and can be integrated in any intrusive method.
Therefore the proposed method can take advantage of accurate and
reliable intrusive methods and predict intelligibility without requir-
ing the clean signal.

The twin hidden Markov model (THMM) [11, 12] is a statisti-
cal model which was previously applied to speech signal enhance-
ment. The main concept of twin HMMs is presented in Figure 1.
Here, we propose to use this model for obtaining clean features (in-
stead of clean speech) out of a degraded speech signal. They are
needed inside an intrusive framework to predict the intelligibility.
THMMs can be optimized for synthesizing specific clean speech
features while other simple speech enhancement methods like the
Wiener filter or spectral subtraction do not have this capability. The
results show a strong correlation between the predicted intelligibility
and the human recognition accuracy.

The remainder of this paper is organized as follows: In Section 2,

624978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



REC PDF

REC feature
training dataset

REC feature
extraction

SYN PDF

SYN feature
training dataset

Synthesis
STOI-based
intelligibility
estimation

Synthesized
1/3 octave band
representation

THMMB-STOI
measure

Intelligibility prediction

DFT-based
1/3 octave band
decomposition

State occupation

probabilitiesγ

E
[

x
SYN|q

]

EM
algorithm

THMM

Training

Transcription

Forward-backward
algorithm

Alignment

Noisy
speech signal

Fig. 2. Framework of speech intelligibility prediction using twin hidden Markov models.

the general concept of THMMs is introduced and the basic structure
of our framework is described. Section 3 gives a detailed explana-
tion of all experimental settings and analyzes the results.Finally the
conclusions are presented in Section 4.

2. TWIN-HMM-BASED INTELLIGIBILITY PREDICTION

The idea of using twin HMMs (THMMs) in predicting speech intel-
ligibility is a general approach. THMMs can be integrated into the
framework of other intrusive intelligibility predictors in order to esti-
mate the relevant clean features from the noisy test signal.This is a
notable advantage of the proposed method over other non-intrusive
ones. The new approach can work in combination with many other
intelligibility prediction methods and compensate their problem of
requiring the clean reference signal. To implement our idea, we have
chosen the STOI [5] algorithm as the intelligibility prediction mea-
sure in this paper. It has been shown in several studies that the STOI
is a reasonable predictor of intelligibility and it is currently in wide
use [6,9,13,14].

2.1. Twin Hidden Markov Models (THMMs)

As can be seen in the conceptual representation of the twin HMMs
in Figure 1, there is only one state sequence in a THMM. However
each state is associated with two output density functions (ODF);
one for recognition and one for synthesis. The state sequence repre-
sents the temporal evolution of speech. The recognition ODFs are
trained using recognition features (REC features) and the synthesis
ODFs are trained using synthesis features (SYN features). THMMs
have been introduced in order to use ASR systems for synthesizing a
cleaner version of a speech signal and for speech enhancement. The
REC features, which are appropriate for maximizing the recognition
accuracy, are used in the THMM framework to decode the best state
sequence [11]. Then the decoded state sequence in combination with
the synthesis ODFs is used to synthesize a clean reference signal.

2.2. THMM-based STOI

Figure 2 shows the global scheme of the proposed framework. This
approach is composed of three main phases; training, alignment, and

intelligibility prediction, which are explained in detailin the follow-
ing paragraphs.

In the first phase, the standard expectation maximization (EM)
algorithm is used to train a THMM set. Using the iterative EM algo-
rithm and the REC features, the recognition output density functions
of the THMM set are learned. In the last iteration, the occupation
probabilities of all states over timeγ, are stored for later computa-
tions. The training procedure of the synthesis output density func-
tions accumulates the SYN features weighted with the storedγ from
the final iteration of the REC distribution training.

In the alignment phase, the REC features are extracted from the
noisy speech signal. Then, the features along with the transcription
data are fed into a forced alignment system. In this system a forward-
backward algorithm is used to estimate the state occupationproba-
bilities γ per time frame. The REC distributions trained during the
first phase are used in this estimation process. Using the transcrip-
tion data and employing a forced alignment algorithm leads to a high
accuracy of the estimatedγ matrix.

In the third and last phase, at first the relevant clean features
are synthesized in order to be used in the intelligibility prediction
step. The synthesized features are thus obtained in the SYN feature
domain, which is the one-third octave frequency band here. The
DFT-based one-third octave band decomposition is also applied to
the noisy speech signal. Later, the extracted noisy features together
with the synthesized clean features are used inside the STOI-based
intelligibility estimation block to estimate the intelligibility measure
called THMMB-STOI. This last block implements short-time seg-
mentation, normalization, clipping, and correlation computation be-
tween its two inputs, exactly as described in the STOI algorithm [5].

To synthesize the clean signal in this phase, the synthesis out-
put density distribution learned in the training phase, andthe state
occupation probability obtained in the alignment phase areused. In
fact the mean of the SYN distribution in each state E[xSYN

t |qt = i]
is weighted by the occupation probability of the same stateP (qt =
i|xREC

t ) and summed over all states to obtain the synthesized (x
SYN
t ):

x
SYN
t =

N
∑

i=1

E(xSYN
t |qt = i)P(qt = i|xREC

t ). (1)
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Fig. 3. 1/3 octave band representation of (a) the clean Grid sen-
tence "lay blue by u 7 soon", (b) the same signal synthesized using a
THMM, and (c) the corresponding distorted signal at 0 dB SNR.

Here,N is the number of states,t is the frame index andqt is the
state at time indext.

As mentioned earlier, THMMs were primarily introduced for
speech enhancement inside an audio-visual speech recognition sys-
tem. However, there are main structural differences between the cur-
rent framework and the THMM-based speech enhancement system.
The proposed method utilizes the transcription information instead
of the automatic speech recognition output to decode the speech con-
tent of the signal. Besides, the speech enhancement system receives
both audio and video signals as input and uses a combination of the
synthesized and the enhanced signals to produce its output signal. It
also must be noted that in our proposed method, the relevant clean
features are synthesized instead of the clean speech signal.

Figure 3 shows the one-third octave band representation of a
noisy signal at 0 dB SNR and its equivalent clean and synthesized
versions. One can observe that the clean version of the noisysignal
has been retrieved very well using the THMM approach and is inline
with its actual clean counterpart. In Figure 4 the estimatedTHMMB-
STOI has been plotted versus the conventional STOI. These results
have been computed over all SNRs using the test data set. As ex-
pected, a strong and almost linear correlation between the two mea-
sures is observable.

3. EXPERIMENTS AND RESULTS

3.1. Data set

In this study, the Grid corpus [15] has been used as the speech
database. The original corpus contains 34000 clean speech utter-
ances in total. In addition to the original data, there is also a noisy
version of the corpus at 12 different SNRs in the range from 40down
to -14 dB. At each SNR, there are in total 2000 noisy speech signals
created by adding speech shaped noise (SSN) to the clean speech

T
H

M
M

B
-S

T
O

I

STOI
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Scatter plot of the conventionally estimated STOI measure
against the THMMB-STOI measure.

utterances from the original Grid corpus. This part also contains
results of listening tests conducted by Jon Barker at the University
of Sheffield with 20 listeners at each SNR. The sentences in the Grid
database comprise six words, following the structure: verb-color-
preposition-letter-digit-adverb. However, in the listening tests, the
listeners were only asked to recognize the words in the positions of
color, letter, and digit. The speech signals at each SNR havebeen
divided randomly into training (80 %), development (10 %) and test
sets (10 %) for the following experiments. Also the clean version
of the files from each of these sets have been collected to create
the equivalent clean training, development and test sets. Since we
are proposing to synthesize the clean relevant intelligibility features
using the noisy signal and considering the fact that the dataat 40 dB
SNR can almost be considered clean, this SNR was excluded in the
following experiments.

3.2. Experimental setup

In order to obtain a consistent framework with comparable results,
all common feature extraction parameters (like frame length, analy-
sis window type, etc.) have been selected as suggested in theSTOI
framework [5]. This also applies to the frequency sampling of the
speech signals, which have been down-sampled fromfs = 25 kHz to
10 kHz. The REC features are standard mel frequency cepstralcoef-
ficients (MFCCs), which are being used widely in automatic speech
recognition tasks. These features are 39-dimensional vectors, com-
posed of the first 13 static MFCCs and their corresponding first (∆)
and second time derivatives (∆∆). According to the selected intel-
ligibility measure, which is the STOI, the SYN features are the one-
third octave band representation of the signal in the DFT domain.
These features are 15 dimensional vectors, which later are used to
compute the STOI measure. Each word is modeled using a linear
left-to-right HMM. Therefore we have 51 whole-word HMMs and
one silence model in each HMM set. The number of states has been
chosen as three times the number of phonemes of the word. A 2-
and 1-mixture diagonal covariance GMM is used for modeling the
state distribution of recognition and synthesis HMMs respectively.
For recognition we trained noise-dependent models using training
set data at each SNR separately and evaluated the accuracy ofthese
models with development sets. However, for synthesis, a universal
clean model was used for all conditions.

3.3. Results

In the following experiments, the performance of the objective mea-
sures is being compared to the human speech recognition accuracy
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Fig. 5. Scatter plots of (a) the conventionally estimated STOI mea-
sure and (b) the THMMB-STOI measure against the word correct
scores (WCS), and the corresponding trained logistic functions.

which is stated as the word correct score (WCS). This subjective
measure is computed by dividing the number of correctly recognized
keywords by the total number of keywords.The reported WCS here
was averaged over ten files. Similarly, the results of the objective
measures, e.g. STOI, were also computed over the same ten files.

In order to evaluate the performance of the intelligibilitymea-
sures, three different figures of merit have been used: root mean
square error (RMSE), normalized cross-correlation coefficient
(NCC), and Kendall’s Tau coefficient (τ ) [5, 6]. The first two per-
formance measures are valid only when their input variableshave a
linear relationship. Thus, we used a sigmoid mapping function and
the logistic regression method to linearize the relationship between
the machine-derived and the human listening results (WCS).The
mapping procedure has been performed exactly based on [6].

The mapping functions derived for the STOI and the THMMB-
STOI along with the test data are shown in Figure 5. The functions
have been derived separately for each intelligibility measure using
the development data over all SNRs. As can be seen in Figure 5,the
test data appears to fit the mapping function. In Table 1 the accuracy
of the proposed measure (THMMB-STOI) as well as the conven-
tional STOI (STOI) are presented. The results have been computed
as an overall accuracy using the test data from all SNRs. Larger val-
ues of NCC and Kendall’s Tau (τ ) show higher correlation between
the objective measures and the human performance, which conse-
quently means higher accuracy in predicting the intelligibility. In
contrast, lower values of RMSE represent a higher accuracy of the
intelligibility prediction methods. It can be clearly seen, that the pro-
posed method (THMMB-STOI) has a good performance in terms of
all evaluation measures, and is comparable to the conventional STOI.
Table 2 shows the prediction errors of the STOI and the THMMB-
STOI in each SNR separately. As it was expected, the RMSE of
both prediction methods decreases (improves) as the SNR increases.
However, there are some inconsistencies between some SNRs.For
example, while the SNR improves from -14 to -12 dB, the RMSE
value increases for both intelligibility measures.

In total, the proposed THMM-based method was successful in

predicting the intelligibility with relatively high accuracy and with-
out having the clean reference signal. However, there is an increased
computational complexity in the proposed method. Running on a
standard PC (Intel(R) Core(TM) i5-4570 CPU @ 3.20 GHz, 8 GB
memory) with Windows 10 and Matlab 2015a, the processing time
was 1.92 s on average for a speech signal of 1.76 s average length.

Table 1. Performance of objective measures in terms of NCC (%),
RMSE, and Kendall’s Tau (τ %) between objective measures and
listening test results (WCS)

Measure NCC (%) RMSE τ (%)
STOI 93.55 0.092 74.52

THMMB-STOI 93.57 0.091 74.38

Table 2. RMSE between mapped objective measures and listening
test results in different SNRs

SNR (dB) STOI THMMB-STOI

-14 0.132 0.108
-12 0.165 0.176
-10 0.109 0.111
-8 0.153 0.149
-6 0.086 0.099
-4 0.052 0.052
-2 0.060 0.064
0 0.046 0.043
2 0.038 0.034
4 0.037 0.032
6 0.039 0.034

All 0.092 0.091

4. CONCLUSIONS

We have proposed a solution to allow the use of intrusive speech
intelligibility prediction algorithms in situations whenthe reference
signal is not accessible. The proposed method is based on synthe-
sizing the clean features by means of twin HMMs. This statisti-
cal model gives us the freedom to choose the synthesis features ac-
cording to the intelligibility prediction method that is going to be
used. After linearization, the predicted intelligibilityusing synthe-
sized clean features shows a strong correlation with human data and
agrees with the intelligibilities computed with actual reference fea-
tures. This method can be integrated into the framework of many
other intelligibility prediction measures and can providesynthesized
clean reference features, which is a requirement in intrusive meth-
ods. To synthesize the clean features in this work, transcription data
was used. Speech shaped noise was utilized to evaluate on theGrid
database, which possesses a specific sentence structure. These facts
indicate a direction for future work, namely making THMMs more
independent of extra data and more flexible with respect to the task
while keeping their accuracy high.This can likely be achieved by
training THMMs on large-vocabulary corpora of speech signals, and
carrying out speaker adaptation during test time.
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