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ABSTRACT
Automated objective methods of audio evaluation are fast,
cheap, and require little effort by the investigator. However,
objective evaluation methods do not exist for the output of all
audio processing algorithms, often have output that correlates
poorly with human quality assessments, and require ground
truth data in their calculation. Subjective human ratings of
audio quality are the gold standard for many tasks, but are
expensive, slow, and require a great deal of effort to recruit
subjects and run listening tests. Moving listening tests from
the lab to the micro-task labor market of Amazon Mechanical
Turk speeds data collection and reduces investigator effort.
However, it also reduces the amount of control investigators
have over the testing environment, adding new variability and
potential biases to the data. In this work, we compare mul-
tiple stimulus listening tests performed in a lab environment
to multiple stimulus listening tests performed in web environ-
ment on a population drawn from Mechanical Turk.

Index Terms— audio quality evaluation, crowdsourcing

1. INTRODUCTION

A goal of much research into audio processing and synthesis
algorithms (e.g. audio source separation) is to create algo-
rithms that produce output that “sounds good” to a person. In
these cases, human perception of quality is the gold standard.
The ITU standard methodology for subjective evaluation of
audio with “intermediate impairments” (such as in source sep-
aration) is ITU-BS.1534-2, a.k.a. MUSHRA (MUltiple Stim-
uli with Hidden Reference and Anchor) [1]. MUSHRA spec-
ifies each evaluation should use at least 20 expert participants
in a controlled lab setting that adheres to specific acousti-
cal criteria. Since this is difficult and time consuming, re-
searchers often use quick, easy, automated quality measures.

Automated quality measures for audio source separation
either were not designed to emulate output human quality
evaluations (e.g. BSS-Eval [2]) or were optimized to correlate
their output to a fixed set of known human evaluations that are
task-specific and limited in size [3, 4]. Objective quality mea-
sures for audio codecs that correlate well with human ratings
∗This work was partially performed while interning at Adobe Research.
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[5, 6] on minor sound degradations are typically not useful on
the much larger range of errors and artifacts caused by audio
source separation [4].

One can reduce the effort required for conducting a per-
ceptual evaluation of audio by moving from the lab to the web
[7, 8, 9, 10, 11]. Web platforms allow automating conducting
perceptual studies and recruiting participants on Amazon’s
Mechanical Turk or LabintheWild [12]. Often, studies with
many subjects can be completed in hours (instead of days or
weeks for lab studies) with relatively little researcher effort.

There have been web-based media quality evaluation
frameworks whose results have been tested [13, 14, 15, 16, 8].
Two of these studies tested perceptual audio evaluations
[16, 8], but no study has evaluated MUSHRA listening tests
in a web context. Neither has anyone addressed the vari-
ability (levels of expertise, listening environments, listening
devices, and hearing abilities) introduced when performing
MUSHRA-like1 listening tests on the web. Since MUSHRA
is a very popular protocol, it is worth determining the re-
lationship between the results of lab-based and web-based
MUSHRA-like evaluations.

In this work, we compare the results from web-based
MUSHRA-like listening tests performed on Mechanical Turk
to those of MUSHRA performed in a controlled lab envi-
ronment and to the widely-used objective quality measures
used for source separation in BSS-Eval [2]. We also present
simple additions to the MUSHRA protocol to account for
variability in listening environments. Source separation is our
audio task of interest, but our results should be relevant to the
evaluation of any audio task for which there are “intermediate
impairments” (i.e. significant degradation that can be heard
in most listening environments).

2. OVERVIEW OF MUSHRA

MUSHRA is a protocol for the subjective assessment of in-
termediate audio quality. In a single MUSHRA trial, 3 to
12 stimuli are rated in comparison to a reference and each
other on a 0-100 quality scale using a set of sliders. One of

1Some of the specifications of the MUSHRA protocol are not feasible
on the web. Therefore, we refer to such tests performed on the web as
“MUSHRA-like” tests.

619978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



these stimuli is the hidden/unlabeled reference (the desired
sound) and at least one other is an unlabeled anchor (a very
bad sound). The remaining stimuli are outputs from the sys-
tems under test. Since these stimuli are rated in comparison to
the reference, we expect the reference to be rated as excellent.
Anchors are stimuli designed to be rated as poor. The stim-
uli and the reference can be played and rated unlimited times
in each trial before submission. MUSHRA also specifies the
listening environment, training procedure, and participant se-
lection (participants must be experienced, normal-hearing lis-
teners, trained in subjective quality evaluation).

3. THE PEASS DATA SET

The developers of the PEASS Toolkit for automatic source
separation evaluation, [4] trained their models on human rat-
ings of source separation algorithm outputs collected using a
MUSHRA protocol. Humans rated source separation of 10
mixtures: 5 of speech and 5 of music. All mixtures were
5 seconds long. For each mixture, 8 test sounds were gen-
erated: the ground truth target source (the reference), 3 an-
chors, and 4 outputs, each from one of a variety of source
separation algorithms. Participants were 20 normal-hearing
experts in general audio applications. Each participant was
consented via script and performed a MUSHRA trial for 4
different quality scales on each of the 10 sets of test sounds.
All participants listening over the same model of headphones
in a quiet environment. The quality scales were labeled global
quality, preservation of the target source, suppression of other
sources and absence of additional artificial noises. We use the
same test material (audio stimuli) used to generate the PEASS
training data, and compare ratings collected in a web-based
listening tests to the ratings collected in the lab-based listen-
ing tests in the PEASS data set.

4. CROWDSOURCING MUSHRA-LIKE TESTS

To perform our MUSHRA-like listening test on the web, we
used Amazon’s Mechanical Turk (AMT) to recruit and pay
subjects. In the original PEASS data collection, participants
performed 40 different MUSHRA trials, one for each mixture
/ quality-scale pair—this took each participant several hours
to complete. However on AMT, tasks typically take only a
few minutes or less to complete [17]. We therefore limited
each AMT task to be one MUSHRA trial. We randomly as-
signed participants to one of the four quality scales, and al-
lowed them to perform up to 10 MUSHRA trials, one for each
mixture (randomly ordered).

4.1. Accounting for varied hearing abilities and listening
environments

The MUSHRA protocol specifies all participants must listen
in the same controlled listening environment. When running

tests via AMT, one must account for participants listening
in a large variety of environments. Therefore, participants
were asked to complete a survey on demographics and lis-
tening conditions. We also asked participants to listen over
headphones and perform two different hearing tests in addi-
tion to the MUSHRA trial. Hearing tests only had to be per-
formed once by any participant regardless of the number of
MUSHRA trials they did.

The first hearing test—the hearing screening—ensured
participants listened over devices with an adequate frequency
response (e.g. not laptop speakers) and followed instructions
(since the answer is objective and known). In this test, partic-
ipants were first asked to adjust the volume of a 1000Hz sine
tone to a comfortable level and to not change the level there-
after. Participants listened to two 8s audio clips and counted
how many tones were heard. Each clip contained a 55Hz tone,
a 10kHz tone, and between 0 and 6 tones of random frequen-
cies between 55Hz and 10kHz. Tones were 750ms sine waves
spaced by 250ms of silence. Tones were scaled to be of ap-
proximately equal loudness, and were presented in random
order with silence replacing tones when there were less than
8 tones. Participants had two chances to answer correctly.

The second hearing test—the in situ hearing response es-
timation—obtained an overall estimate of hearing thresholds
at a range of frequencies, treating the combination of the fre-
quency response of the environment, their hearing, and their
listening device as one unit. Participants again listened to au-
dio clips and counted tones of the same duration as the hear-
ing screening. There were eight 12s audio clips in this test.
One clip contained only silence. In the remaining clips, the
frequency of the sine tones was constant throughout the clip,
but the amplitude of the tones varied. The 7 frequencies were
log-spaced between 23Hz and 16.8kHz. Each clip contained
tones of six 15dBFS-spaced levels (-90 to -15dBFS) and up to
3 additional repeated tones. The remaining time consisted of
silent beats. Ordering of tones and beats was random. Based
on a participant’s tone count for a particular frequency, we de-
termined their in situ hearing threshold at that frequency. If a
participant’s tone count was 0 for all frequencies or was more
than 1 higher than the actual number of tones, their response
was marked as rejected.

4.2. Modification to PEASS Instructions

We discovered in a pilot study that some language used in the
PEASS MUSHRA instructions was inappropriate for novice
participants. To reduce participant confusion, we simplified
the instructions from the instructions used in the PEASS data
collection. We rephrased and reworded the instructions to be
as clear as possible to a novice unfamiliar with source sep-
aration. We also added an additional training step for par-
ticipants in which we played example anchors and references
(that were not used in the rest of the study) and informed them
of the clips’ expected ratings.
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Lab
Web

Fig. 1. Distribution of reference (ref) and anchor ratings (anch1-3) for the 4 quality scales pooled over all mixtures. The
asterisks below the anchors indicate which are expected to be rated low for that quality scale. The dotted lines are the quartile
and median markings. Anchor 1: the sum of all sources (the mixture); Anchor 2: target + ‘spectral noise artifacts’; Anchor 3:
low-passed target with 20% of time-domain frames missing (see [4] for more details)

.

5. RESULTS

5.1. Data overview

Using participants recruited on Mechanical Turk, we col-
lected at least 20 MUSHRA trials for each condition (mix-
ture / quality-scale pair). If we limit the data to participants
that passed the hearing screening, there were mean=23.6,
max=37 trials per condition. Including those who failed the
hearing screening resulted in mean=34.4, max=55 trials per
condition. We paid participants $0.80 for the first trial, which
included the hearing tests, and $0.50 for subsequent trials.
Only people with at least 1000 prior AMT assignments and
a 97% approval rate were allowed to participate. In total,
we obtained 1763 trials from 530 unique participants, 336 of
whom passed the hearing screening. This led to 1147 trials by
participants who passed the hearing screening. The mean tri-
als per participant was 3.3 (min=1, max=10). All of the data
was collected in 8.2 hours. Note that it would be very difficult
to collect data from such a large number of participants in any
reasonable time frame in a lab setting.

According to the participant survey, the distribution of re-
ported listening devices was 72% headphones, 16% laptop
speakers, 10% loudspeakers. For those who passed the hear-
ing screening, this distribution changes to 84% headphones,
3% laptop speakers, 11% loudspeakers. In addition, 44%
of survey respondents reported being able to hear non-test
sounds (e.g. environmental sounds) during the test, but only
7% found these sounds distracting. 85% of participants re-
ported this was their first perceptual audio study.

5.2. Ascertaining which scales participants understood

We expect participants who understood the task and quality
scale to rate quality scale’s anchor(s) (indicated by the aster-
isks in Figure 1) in the lower half of the scale, and the other
quality scales’ anchors in the upper half of the scale. We also
expect references to be rated very high, near 100.

Figure 1 shows distributions of participant ratings of the
reference and anchor sounds from the PEASS data. Each sub-
figure corresponds to a quality scale (e.g. absence of artificial
noises). Within a quality scale there are four violin plots. The
left half of each plot gives the distribution of web participants,
the right half gives the distribution of lab participants. An as-
terisk below a plot indicates that stimulus should be rated low,
if the participant understands the task.

In general, both web and lab participant distributions of
ratings indicate they understand the task, as distributions skew
low for stimuli marked by an asterisk and high for the oth-
ers. The main exception to this is on the absence of artificial
noise quality-scale, the distribution of anch3 is centered on
the wrong side of the scale for the lab participants. While
the use of training examples mitigated this effect for the web
participants, the median of the distribution is still below 50.
It seems that listeners hear any distortion (subtractive or ad-
ditive) to the target as simply a distortion. This conflation
makes the target preservation and absence of artificial noise
quality scales problematic. We believe using a single quality
scale that is inclusive of all distortions (e.g. lack of distortions
to the target) would eliminate this confusion.

5.3. Weighting participant ratings by hearing response

For the hearing response estimation described in Section 4.1,
only 10 of the 530 participants’ responses were rejected ac-
cording to the criteria in Section 4.1. Figure 2 shows the
mean and standard deviation of the remaining responses and
is encouragingly resemblant of minimum audible sound level
curves [18]. We combined a participant’s resulting thresh-
old curve from the later test with the power spectral densi-
ties of the stimuli; thereby creating a weight that is higher
when the stimulus contains audible frequency content and
lower when it contains inaudible frequency content. To do
so, we first subtracted the log hearing threshold (linearly in-
terpolated to N (2048) frequency bins), Hk, of the kth partici-
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Fig. 2. Mean in situ hearing responses of web participants
(N=520). Shaded region is +/- sample standard deviation.

Fig. 3. Pearson correlation of web-MUSHRA and BSS-Eval
scores with the lab-MUSHRA scores for the 4 quality scales.
Scores were limited to the systems under test (i.e. excluding
the reference and anchors) and estimated using the median
of ratings from a sample size of 20 participants per mixture.
Scores for all mixtures were concatenated before calculating
the correlation for each quality scale. Bars represent 95% CIs.

pant, from the log power spectral density, Sm of the mth mix-
ture. This inverse filters the power spectral density, empha-
sizing the frequencies that the participant can hear well. We
then take the log-RMS of this difference to obtain a weight,

wm,k = 20 log10

√
1

N2

∑N
n 10(Sm,n−Hk,n)/10.0.

5.4. Comparing to the lab-based listening test results

To establish if a Mechanical Turk-based listening test can
act as a proxy to a lab-based test, we measured the Pear-
son correlation between web-MUSHRA scores with lab-
MUSHRA scores. As recommended in the MUSHRA stan-
dard, we used the median to aggregate participants’ ratings
into stimulus scores. Figure 3 details the process and dis-
plays 95% confidence intervals and point estimates of the
correlation. The weighted MUSHRA scores were calcu-
lated using a weighted median with the weights described
in Section 5.3. The screened MUSHRA scores were calcu-

lated only with responses from participants who passed the
hearing screening. From the figure, we see that scores cal-
culated from MUSHRA-like tests on the web correlate well
to lab-MUSHRA scores (Overall Quality: r=0.78; Target
Preservation: r=0.82; Suppression of other Sources: r=0.96;
Absence of Artificial Noise: r=0.69). For comparison, we
also correlated the corresponding the BSS-Eval objective
measures (SDR, ISR, SIR, and SAR [4])—all of which were
less correlated to the lab scores than the web scores were.

Neither the hearing screening nor the hearing response
weighting seem to affect the scores for these stimuli. A pos-
sible explanation for this is that the source separation algo-
rithms under test have such easily detectable impairments that
they can be heard and assessed in both good and poor listen-
ing conditions. Therefore, for the remainder of the paper we
will simply focus on the web-MUSHRA results without the
hearing test filtering or weighting.

Regardless of the correlation, it may be that scores calcu-
lated from MUSHRA-like tests on the web are noisier than
those of lab-based MUSHRA tests. We calculated the widths
of the 95% confidence intervals (calculated via bootstrapping
with 1000 iterations) for the scores of the systems under tests
for all four quality scales and pooled them together into one
distribution for each MUSHRA type (lab and web). Since
there were 20 lab participants, we limited ourselves to only
using the first 20 web participants. The distributions of the CI
widths for the web and lab scores are quite similar with al-
most identical sample means (web: 17.5, lab: 17.1) and with
the standard deviation of the web score widths actually a bit
smaller than the lab score widths (web: 3.9, lab: 5.2). This
implies that scores from MUSHRA-like tests on the web are
not noiser than those from MUSHRA in the lab, and that 20
web participants may be adequate to obtain scores of compa-
rable confidence as that of 20 lab participants.

6. CONCLUSION

We compared MUSHRA performed in a controlled lab en-
vironment to a MUSHRA-like test performed in an uncon-
trolled web environment on a population drawn from Me-
chanical Turk. The web data was collected from 530 partic-
ipants in only 8.2 hours. The resulting perceptual evaluation
scores were comparable to those estimated in the controlled
lab environment. Two procedures were proposed to account
for varied hearing abilities and listening environments, but
these procedures did not improve correlations with the lab
data for our stimuli. This could be due to the size of impair-
ments in the output of source separation algorithms, which
may be easily detectable in both good and poor listening con-
ditions. While such hearing tests may prove useful on more
subtly different stimuli, it is encouraging that these additional
tests may not be necessary for many types of stimuli.
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