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ABSTRACT

When different parts of speech content such as voice-overs and nar-

ration are recorded in real-world environments with different acous-

tic properties and background noise, the difference in sound quality

between the recordings is typically quite audible and therefore unde-

sirable. We propose an algorithm to equalize multiple such speech

recordings so that they sound like they were recorded in the same

environment. As the timbral content of the speech and background

noise typically differ considerably, a simple equalization matching

results in a noticeable mismatch in the output signals. A single

equalization filter affects both timbres equally and thus cannot dis-

ambiguate the competing matching equations of each source. We

propose leveraging speech enhancement methods in order to sepa-

rate speech and background noise, independently apply equalization

filtering to each source, and recombine the outputs. By indepen-

dently equalizing the separated sources, our method is able to better

disambiguate the matching equations associated with each source.

Therefore the resulting matched signals are perceptually very simi-

lar. Additionally, by retaining the background noise in the final out-

put signals, most artifacts from speech enhancement methods are

considerably reduced and in general perceptually masked. Subjec-

tive listening tests show that our approach significantly outperforms

simple equalization matching.

Index Terms— Equalization matching, speech enhancement,

voice-overs.

1. INTRODUCTION

Equalization is a common audio effect used to manipulate the spec-

tral balance of an audio signal. In audio mixing, it can be used to

emphasize/de-emphasize a frequency range in a signal or to compen-

sate for distortion introduced by hardware or post-processing [1, 2].

On the other hand, in the mastering stage, equalization (EQ) is used

to affect the general tonal balance of the track.

Being able to match the perceptual rendering of two audio tracks

through equalization is often desirable. For example, one task of au-

dio mastering engineers is to match the tonal balance between differ-

ent tracks in order to maintain some uniformity [2]. Another appli-

cation of interest corresponds to the scenario in which segments that

are meant to be played back sequentially have been recorded sepa-

rately in different recording environments (e.g., hardware, location).

The change in environment changes the spectral balance of the signal

and it can be desirable to smooth the rendering between segments.

As a consequence, many professional audio software packages pro-

vide equalization matching audio effects [3, 4, 5]. To the best of our

∗Part of this work was performed while interning at Adobe Research.

knowledge, such equalization is often performed by estimating some

form of spectral balance for a track and applying it to another.

In this paper, we focus on an application of growing interest:

with the increased availability of mobile devices equipped with

recording hardware, more and more speech content is recorded

on-the-fly for various purposes. Examples include voice-overs, nar-

ration, audio stories, and educational content. Such content is often

recorded in non-ideal environments with imperfect sound insulation

resulting in audio with noticeable background noise and coloration.

It is often convenient to record different segments of the content at

different times and with different recording setups (e.g., location,

recording layout, hardware). This results in mismatched background

noise and coloration between those segments. Consequently, the re-

sulting audio track exhibits noticeable transitions between those

segments and considerably degrades the listener’s experience when

playing back the entire track.

Using a simple matching approach where we apply a single

equalization filter is not generally suitable to smooth out those dif-

ferences, as the spectral balance between the background noise and

speech content of two different segments are substantially different.

Alternatively, prior removal of the background before applying a

single equalization filter to the speech alone is also generally unsuit-

able since either 1) incomplete removal of the background results

in a similar issue of mismatched spectral balance between residual

background and speech, or 2) complete removal of the background is

often associated with noticeable audio artifacts in the speech signal.

We present a method that allows for differentiated equalization of

the speech and background noise sources and subsequent remixing

of them in order to produce a convincing matching with low levels

of audio artifacts. In Sec. 2, we present a formulation of the problem

and detail our approach. In Sec. 3, we detail our practical imple-

mentation. In Sec. 4, we present the results of subjective listening

tests validating our approach.

2. EQUALIZATION MATCHING

We consider two different real-world recordings ya and yb contain-

ing a speech yS and a background noise yN source:

ya(t) = yS
a (t) + yN

a (t) and yb(t) = yS
b (t) + yN

b (t) (1)

In the remainder of the paper, we use the equivalent frequency

domain representation of the signals:

Ya(ω) = YS
a (ω) + YN

a (ω) and Yb(ω) = YS
b (ω) + YN

b (ω) (2)

Each source in those mixtures is likely to have been the result

of an original signal distorted due to different phenomena occur-

ring during the recording process, such as room reverberation and
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microphone/sensor response. Additionally, some recording devices

can include some additional automated post-processing (e.g., noise

suppression). We approximate those distortions as a series of linear

operations, and summarize them as a linear filter Hi applied to each

source i ∈ {S,N}. The mixtures Ya and Yb can then be written as:

Ym(ω) = HS
m(ω)X S

m(ω) +HN
m(ω)XN

m (ω) for m ∈ {a, b} (3)

It is generally impractical to discriminate the original source

from its distortion. For example, while extensive research exists to

estimate and attenuate distortion introduced by reverberation [6, 7,

8], the process can introduce undesirable artifacts. Moreover, when

dereverberation is applied to multiple signals recorded in different

recording environments, each signal often retains enough reverbera-

tion to make them sound quite different in terms of spectral balance,

leaving the equalization matching problem unsolved.

An alternative objective can be to match the two sound mixtures

Ya and Yb so as to create a new mixture Yc from Yb that sounds

like it was recorded in the same conditions as Ya. In our framework,

this objective can be accomplished by swapping the distortion filters

(i.e., replacing HS
b and HN

b respectively with HS
a and HN

a ). In other

words, the matching algorithm aims at generating the mixture Yc

such that:

Yc(ω) = HS
a (ω)X

S
b (ω) +HN

a (ω)XN
b (ω) (4)

2.1. Simple matching

To the best of our knowledge, existing equalization matching sys-

tems typically use a simple equalization matching process as de-

scribed in this section. This process estimates a single equalization

profile (i.e., a linear filter G) for Ya and applies it to the signal Yb to

get the matched signal Yc as Yc(ω) = G(ω)Yb(ω), meaning:

Yc(ω) = G(ω)HS
b (ω)X

S
b (ω) + G(ω)HN

b (ω)XN
b (ω) (5)

The matching equations for any X S
b (ω) and XN

b (ω) are then:

Hi
a(ω) = G(ω)Hi

b(ω) for i ∈ {S,N} (6)

In practical cases, it is not possible to estimate satisfactorily the

filters HS
a , HS

b , HN
a and HN

b . However, we can often assume that

the sources from the two tracks have similar statistics (i.e., similar

overall spectral content). For example, the average spectral balance

of speech segments from the same person are likely to be similar,

and background can often be approximated as filtered white noise.

We can then assume X S
a (ω) ≈ X S

b (ω) and XN
a (ω) ≈ XN

b (ω). The

matching equations then become:

Hi
a(ω)X

i
a(ω) ≈ G(ω)Hi

b(ω)X
i
b(ω) for i ∈ {S,N} (7)

We can see that neither (6) nor (7) have solutions for G(ω) in

general as the matching equations are contradictory in both cases,

meaning it would not be possible to find a filter that would produce

the correct spectral balance in both speech and background. Our best

guess is to compute the filter G as the ratio:

G(ω) = Ya(ω)/Yb(ω) (8)

2.2. Source-differentiated matching

In the previous section, we see that performing a proper matching

is made difficult by the fact that the equalization filter affects both

sources, a well-known fact in audio mastering [1]. Ideally, we need

(a) (b)

Fig. 1. Structure of the (a) simple and (b) source-differentiated

equalization matching systems.

to perform differentiated equalization on each source before mixing

them, using two equalization filters GS and GN so that:

Yc = GS(ω)HS
b (ω)X

S
b (ω) + GN (ω)HN

b (ω)XN
b (ω) (9)

The matching equations are then expressed as:

Hi
a(ω) = Gi(ω)Hi

b(ω) for i ∈ {S,N} (10)

With the hypotheses X S
a (ω) ≈ X S

b (ω) and XN
a (ω) ≈ XN

b (ω),
we get the following matching equations:

Hi
a(ω)X

i
a(ω) ≈ Gi(ω)Hi

b(ω)X
i
b (ω) for i ∈ {S,N} (11)

To solve those two equations, we would need access to each

source. This is impractical in the desired context, as both sources

were recorded simultaneously. The proposed approach is to use a

source separation approach to obtain an approximate separation of

the two sources so that both segments are separated as follows:

Ym(ω) = ỸS
m(ω) + ỸN

m (ω) for m ∈ {a, b} (12)

In speech enhancement literature, a common approach is to con-

sider that the Fourier coefficients of the S and N sources are the

realization of independent identically-distributed zero-mean random

processes with a given distribution (e.g., Gaussian, Laplace) [9]. The

linear distortion of the source does not affect the nature of the distri-

bution, meaning for example that if ℜ(X ) and ℑ(X ) follow a Gaus-

sian distribution, then so will also ℜ(HX ) and ℑ(HX ) (and recip-

rocally) [10]. As a result, common speech enhancement approaches

can be used to estimate ỸS
a and ỸN

a (respectively ỸS
b and ỸN

b ) from

Ya (resp. Yb) as ỸS
a and ỸN

a (resp. ỸS
b and ỸN

b ) so that:

Ỹi
m(ω) ≈ Hi

m(ω)X i
m(ω) for m ∈ {a, b} and i ∈ {S,N} (13)

We can then rewrite the matching equations (10), so that we

compute GS(ω) and GN(ω) as the ratios:

Gi(ω) = Ỹi
a(ω)/Ỹ

i
b(ω) for i ∈ {S,N} (14)

3. IMPLEMENTATION

In practice, the algorithm is applied in the short-time Fourier trans-

form (STFT) domain. We therefore replace (ω) with (ω, t) in our

notation for the signals. In the STFT domain, our equalization filter

can capture and compensate for timbral coloration and for reverber-

ation with a duration lesser or equal to the length of an STFT frame.

The structure of the simple equalization system is shown in

Fig. 1.a. It outputs Yc(ω, t) = G(ω)Yb(ω, t) using G as defined in

(8). In comparison, the structure of the source-differentiated equal-

ization system is presented in Fig. 1.b. The two input mixtures Ya

and Yb are each processed through a separation unit whose outputs

follows (12). ỸS
b (respectively ỸN

b ) goes through an EQ unit where

its equalization is matched to the equalization of ỸS
a (resp. ỸN

a )

using GS (resp. GN ) as defined in (14) so that we get the output:

Ỹc(ω, t) = GS(ω)ỸS
b (ω, t) + GN (ω)ỸN

b (ω, t) (15)
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3.1. Separation unit

Source separation is an active field of audio research [11, 12, 13, 14,

15]. In our scenario of interest, we use algorithms derived from the

field of speech enhancement [9], which aim at removing relatively

stationary background noise signals from speech signals, such that

the background can be recovered as a residual from the algorithm.

We use a separation algorithm based on Wiener filtering [16] as

we found it to be most suitable for our application. In particular,

it was found to separate efficiently most of the background noise,

resulting in an improved estimation and application of the differen-

tiated background equalization without significant performance loss

in the speech equalization. Other methods were found to achieve

a separation balance less suitable to a good performance for our

approach, mostly due to insufficient background removal from the

enhanced speech, resulting in matching issues similar to those we

encounter in the simple equalization (Sec. 2.1) with audible mis-

matched background still remaining with the speech. The separation

we achieve with Wiener filtering introduces noticeable artifacts in

the enhanced speech signal due to strong noise suppression. How-

ever, in the context of differentiated equalization, the impact of those

artifacts is considerably mitigated by the fact that neither component

of the signal is removed, but rather remixed with a modified spectral

balance.

Wiener filtering relies on modeling the STFT coefficients of the

two sources YS(ω, t) and YN (ω, t) as zero-mean Gaussian distribu-

tions with variances λS(ω, t) and λN (ω, t), and requires 1) to com-

pute an estimate of the background noise spectral profile λ̂N(ω, t),
and 2) to compute the a priori signal-to noise ratio (SNR) ξ(ω, t):

ξ(ω, t) = λS(ω, t)/λN(ω, t) (16)

For our offline algorithm, we use the non-causal algorithm de-

scribed in [17] to estimate ξ. Then, we estimate the STFT speech

frames through the weighting |L(ω, t)| of the mixture frames:

YS(ω, t) = |L(ω, t)|Y(ω, t) =
ξ(ω, t)

ξ(ω, t) + 1
Y(ω, t) (17)

3.2. Equalization (EQ) unit

To find the equalization filters GS and GN based on our assumptions,

we can estimate their magnitude frequency response using (14) as:

|Gi(ω)| = |Ỹi
a(ω)|/|Ỹ

i
b(ω)| for i ∈ {S,N} (18)

In the STFT domain, the coefficients are modeled as realizations of

the sources’ random variables, leading to the possible estimators:

|Gi(ω)| =

(

E[|Ỹi
b(ω, t)|

k]

E[|Ỹi
a(ω, t)|k]

)1/k

for i ∈ {S,N} (19)

In practice, for a given k, we estimate the filters as empirical

averages over the STFT frames:

|Ĝi(ω)| =





1

Tb

∑Tb

t=1
|Ỹi

b(ω, t)|
k

[

1

Ta

∑Ta

t=1
|Ỹi

a(ω, t)|k
]

+ ǫ





1/k

for i ∈ {S,N}

(20)

where ǫ is a small value added to avoid numerical problems for very

low energy bands. Acknowledging the limitations of the separation

units, we know that 1) speech is not present in all spectral frames,

and 2) the background noise estimated as residual can be highly dis-

torted in the presence of speech. For this reason, we estimate the

filter for a given source by using only the STFT frames for which

the estimated energy of that source is higher than the estimated en-

ergy of the other source. Our assumptions regarding the different

random processes do not allow us to estimate the correct phase of

the filters, so we consider only linear-phase filters with magnitude

|Ĝi(ω)|. These filters have the advantage of preserving the transients

of the signals, but they cannot compensate for the temporal smear-

ing resulting from distortions such as long reverberations. Hence,

while the overall timbre of the two signals can be matched, the tem-

poral structure of their distortion remains unaffected. For the simple

EQ matching, the system has a single EQ unit (Fig. 1.a) outputting

Yc(ω, t) = G(ω)Yb(ω, t). We compute |G(ω)| from (8) with an

estimator similar to (20) with Ya and Yb in place of Ỹi
a and Ỹi

b .

3.3. Realizable filters

Multiplying directly the STFT frames with an arbitrary zero-phase

spectral weighting for separation (with |L(ω, t)|) or EQ (with

|G(ω)|) corresponds to using non-realizable filters [9], resulting

in time-aliasing artifacts and non-consistent STFTs [18, 19, 20]. We

convert weightings in realizable ones using the following process:

• We zero-pad the signal frames (of length M ) used to compute

the STFT by L samples to get M + L frequency bands.

• Given a zero-phase weighting |H(ω)|, we 1) compute the in-

verse discrete Fourier transform (DFT) of |H(ω)|, 2) circu-

larly shift the resulting impulse response by L
2

samples to the

right, 3) time-limit the impulse response with a window of

length L centered at the
(

L
2
+ 1

)

th sample, so that only the

first L taps are non-zero, and 4) compute the DFT of the win-

dowed impulse response to get a realizable weighting H(ω).

This process effectively smooths out |H(ω)| in a way depending on

the window. Applying the resulting (linear-phase) weighting avoids

time-aliasing artifacts, while its phase results in an added delay of L
2

samples to the output that we compensate for after processing.

3.4. Energy matching and signal-to-noise ratio

The described processing has the advantage of providing approxi-

mate energy matching for each source as, for i ∈ {S,N}, we have:
∑

ω

|Yi
a(ω)|

2 ≈
∑

ω

|Gi(ω)Yi
b(ω)|

2 =
∑

ω

|Ỹi
c(ω)|

2
(21)

It is also interesting to notice that the signal-to-noise ratio (SNR)

of Ỹc also roughly matches the SNR of Ya as:
∑

ω |YS
a (ω)|

2

∑

ω |YN
a (ω)|2

≈

∑

ω |GS(ω)YS
b (ω)|

2

∑

ω |GN (ω)YN
b (ω)|2

=

∑

ω |ỸS
c (ω)|

2

∑

ω |ỸN
c (ω)|2

(22)

Hence, the matching process results in a significant increase in

SNR in the second audio segment if the SNR of signal a is signifi-

cantly higher than the SNR of signal b. Due to the artifacts arising

from the separation unit, this increase in SNR can result in subopti-

mal quality in the output audio signal as those artifacts are not well

masked. This issue can be mitigated by altering the SNR of the out-

put audio signal at remixing to improve the masking. To do so, we

apply a remixing gain γ to the equalized background audio as:

Za = YS
a + γYN

a and Z̃c = ỸS
c + γỸN

c (23)

The SNR of the remixed signals Za and Z̃c is then given by:

SNRz =
1

γ2

∑

ω |YS
a (ω)|

2

∑

ω |YN
a (ω)|2

=
SNRy

γ2
(24)
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Fig. 2. Distribution of each listener’s average rating across the 10

combination examples for the 4 different cases tested in the matching

task (left) and the quality task (right).

4. SUBJECTIVE LISTENING TESTS

Traditional objective metrics for speech enhancement [9] and audio

source separation [21, 22] are not well suited to measure equaliza-

tion matching performance due to the nature of the task. For this

reason, we conduct MUSHRA-like [23] listening tests based on the

MUSHRAM interface1 [24] to assess the performance of our system.

4.1. Data

For our experiments, we used the data from the DAPS dataset [25].

This dataset provides recordings of 5 scripts read by 20 different

speakers (10 male, 10 female) in 10 different real-world recording

environments, i.e., combinations of a room (e.g., living room) and a

device (e.g., iPad). The room balcony was not used as the level and

quality of the background do not correspond to our target scenario.

This provides us with 1000 unique combinations of speaker,

script and environment (room+device). For the recordings corre-

sponding to a given speaker and script, we extract 20 seconds of

audio so that about 0.5 seconds of background noise is present (re-

quired for our separation algorithm) at the beginning of the segment

and that the transition at 10 seconds has low speech energy. We

then replace the last 10 seconds of that signal with the correspond-

ing audio from another environment (room+device), and apply our

matching algorithms to match the second half of the signal to the first

half. Each signal is sampled at 44.1kHz. For the STFT, we use 1024-

sample long Hann windows with 50% overlap and zero-padded by

1024 samples. To estimate the different equalization filters, we

use k = 1 and ǫ = 10−3, and we time-limit them using a 1024-

sample Hann window. Finally, we extract the 10-second segment

around the environment transition. Audio examples are available at

https://ccrma.stanford.edu/~francois/EQM.html.

For the listening tests, 10 combination examples (speaker, script,

environment no.1, environment no.2) are picked at random from our

dataset. 10 unique speakers (5 male, 5 female) are each present ex-

actly once and each of the 5 scripts are present exactly twice in the

examples. We pick 10 unique pairs of environment no.1 and envi-

ronment no.2 so that room no.1 and room no.2 are different.

4.2. Tasks and subjects

In the listening tests, subjects were asked to rate audio files while

listening over headphones, answering two distinct questions in two

independent consecutive tasks. 12 subjects were recruited among the

student and alumni community at Stanford University. All subjects

are between the age of 18 and 35, have no reported hearing problem,

1http://c4dm.eecs.qmul.ac.uk/downloads/#mushram

and have a prior general knowledge of audio processing and/or audio

engineering. Half of the subjects took the quality task first, while the

other half took the matching task first.

In the matching task, subjects are asked to judge how “matched”

each sound file is, in the sense that the beginning and the end of

the file sound like they have been recorded in the same environment

(room+device). For that task, for each of the 10 examples, the lis-

teners are presented with 4 cases: 1) material that was recorded in

a single environment no.1 (reference), 2) the same material with the

first half recorded in environment no.1 and the second half in envi-

ronment no.2 and then matched to no.1 using the simple EQ algo-

rithm (Sec. 2.1), 3) the same material with the first half recorded in

environment no.1 and the second half in environment no.2 and then

matched to no.1 using the proposed algorithm (Sec. 2.2), and 4) for

the same material with the first half recorded in environment no.1

and the second half in environment no.2 and left unchanged.

In the quality task, subjects are asked to judge the quality of

each sound file, in terms of perceived distortion, unnaturalness, and

unpleasantness without consideration of the change in recording en-

vironment. For that task, for each of the 10 examples, the listeners

are also presented with 4 cases: 1), 2) and 3) are identical to 1), 2)

and 3) for the previous task, while 4) is the same material processed

similarly to 3) except that we keep only the equalized speech part

without remixing the equalized background noise in the signal.

4.3. Results

For each listener, we compute the average of their ratings for each

given case across the 10 selected combination examples. The distri-

bution of those averages is presented in Fig. 2. A one-way repeated-

measures ANOVA [26] is conducted to compare the matching and

the quality average rating distributions for the three non-reference

cases. The difference between the different means is found to be

significant for the matching task (F (2, 22) = 36.694, p < 10−4)

and the quality task (F (2, 22) = 19.224, p < 10−4). We also run

paired-sample t-tests between the differentiated EQ and the other

cases, we find the improvement of the differentiated EQ to be sig-

nificant in matching over the simple EQ (p = 1.9 × 10−5) and the

unequalized file (p = 1.6 × 10−3) and in quality over the speech-

only EQ (p = 8× 10−5). The difference in quality between simple

and differentiated EQ is found to be non-significant.

These results demonstrate the ability of differentiated EQ to im-

prove the matching between audio segments recorded in two distinct

environments while the simple EQ filter fails to equalize the signals,

actually degrading the overall sense of matching. Additionally, we

found that a few of the tested files using differentiated EQ were well

enough matched to be misclassified as reference. They also demon-

strate the interest of remixing back the background noise in the final

mixture in order to mask some of the distortion artifacts introduced

by the different units in the differentiated EQ system.

5. CONCLUSION

In this paper, we presented a novel algorithm for performing equal-

ization matching of speech recordings in real-world environments.

Our algorithm separates speech and background noise, indepen-

dently equalizes them, and finally remixes them. This approach dis-

ambiguates the competing matching equations of the two sources,

while limiting the presence of artifacts. It significantly outperforms

the traditional method of using a single equalization filter.
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