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ABSTRACT
We propose a technique of multi-channel speech enhancement based
on integration of beamforming and statistical model-based speech
enhancement to clearly extract the target speech, even in very noisy
environments. Conventional microphone array-based techniques
estimate speech and noise power spectral densities (PSDs) from
the spatial cues of the sound sources; however, their estimation
errors dramatically increase when there are many noise sources.
We integrated clean speech models trained in advance and the
noise PSDs estimated in beamspace to compose observation models
and designed a precise Wiener filter. Experiments under adverse
noise conditions showed that the proposed technique significantly
improved the signal-to-noise ratios (SNRs) compared with the con-
ventional microphone array processing technique.

Index Terms—Microphone array, beamforming, power spectral
density estimation, statistical model, Wiener filter.

1. INTRODUCTION

Hands-free communication can be used anywhere on various au-
dio devices, such as smartphones, wireless headsets, and car mi-
crophones. We can use multiple microphones mounted on such au-
dio devices. However, the quality of communication deteriorates
when they are in noisy environments such as crowded places, fac-
tories, and cars running at high speed. It is important to develop
techniques to clearly extract speech even in such environments by
reducing noise without any signal distortion. For this purpose, we
developed a microphone array-based technique. It is important for
processing applied to communication in actual noisy environments
to robustly adapt to various environments in real time.

Various speech enhancement techniques with microphone ar-
rays have been reported [1]. Applying a Wiener filter [2–6] to the
beamforming output [7, 8] is an effective way to reduce noise with
several microphones. We have already proposed a PSD-estimation-
in-beamspace method for estimating the power spectral densities
(PSDs) of the target and other sounds on the basis of the phase and
amplitude differences between microphones, referred to as spatial
cues [9–11]. The target/noise PSD estimation has been demonstrated
to be robust in many circumstances, but the target PSD estimation
errors sometimes drastically increase when the sound sources are
not sparse, especially in very noisy environments. These errors can
cause musical noise or distort signals.

Aside from this, statistical model-based speech enhancement
techniques have been extensively studied, mainly for the purpose
of developing robust automatic speech recognition in adverse noise
environments. These techniques incorporate statistical models of
speech (speech models), which are trained using certain speech
corpora, as prior knowledge about a speech. They can accurately
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Fig. 1. Noise reduction based on PSD-estimation-in-beamspace and
Wiener filtering

preserve the characteristics of the speech spectra even after noise
reduction [12–16]. However, they are designed for single micro-
phone signals, and their estimation accuracy rapidly deteriorates
as the signal-to-noise ratio (SNR) of the captured signal decreases.
To overcome this limitation, a few techniques have been developed
to attempt to integrate statistical model-based speech enhancement
with microphone-array-based beamforming [17–19]. However, one
of them merely applies a cascade connected beamforming and a
statistical model-based approach [17], while others require iterative
optimization based on batch processing to adapt the model parame-
ters to the environments [18,19]; thus, these techniques cannot adapt
to every environment in real time.

Inspired by these studies, we propose a technique for integrating
beamforming [9–11] with model-based speech enhancement [16] in
a way that can adapt to every environment in real time. This tech-
nique uses fixed beamforming filters (BFs) and estimates the PSD
of the residual noise by using the PSD-estimation-in-beamspace
method in real time. Pre-trained clean speech models are used to
preserve the general characteristics of the speech spectra. This pre-
vents serious errors in speech PSD estimation due to many noise
sources and improves the Wiener filter. There can be synergy be-
tween the beamforming and the model-based technique because
using BFs provides more accurate noise PSD estimation than con-
ventional single channel model-based techniques.

The rest of the paper is organized as follows. Sec. 2 explains
the PSD-estimation-in-beamspace method and Sec. 3 presents how
to integrate it with the model-based technique. After verifying the
effectiveness of the proposed technique experimentally in Sec. 4, the
paper concludes in Sec. 5.

2. PSD-ESTIMATION-IN-BEAMSPACE FOR
NOISE REDUCTION

This section briefly reviews our previous work, i.e., noise reduction
based on PSD-estimation-in-beamspace and Wiener filtering. Fig. 1
is the flowchart of the noise-reduction process.

Let us assume that the microphone array is composed of M mi-
crophones and the arrival direction of the target speech θ1 is known.
The observed signal in frequency bin ω and time-frame τ is denoted
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as Xω,τ ∈ C
M . The Xω,τ , target speech Sω,τ , coherent inter-

ference noise Ninterf,ω,τ ∈ C
Q, and incoherent background noise

Nbackg,ω,τ ∈ C
M obey Eq. (1), where Aω : CQ+1 → C

M denotes
the transfer function between the sound sources and microphones.

Xω,τ = Aω

[
Sω,τ

Ninterf,ω,τ

]
+Nbackg,ω,τ (1)

Fig. 1 gives an overview of noise reduction based on PSD-
estimation-in-beamspace. In this framework, multiple BFs are used
to analyze sounds arriving from not only the target arrival direction
but also different L (≥ 2) directions θl. The BF output Yω,τ ∈ C

L

is derived as Eq. (2), where Wω : C
L → C

M denotes the BF
coefficients designed by minimum variance distortionless response
(MVDR) [7, 20].

Yω,τ = WH
ω Xω,τ (2)

The superscript H denotes the Hermitian conjugate.

In the PSD estimation, the frequency bin of Yω,τ is compressed
through a filter bank. We denote the filter bank channel and com-
pressed PSD (CPSD) of the BF output as Ω and φY,Ω,τ ∈ C

L,
respectively. The frequency band corresponding to each Ω is set uni-
formly in the equivalent rectangular bandwidth (ERB) scales [21].

We describe the beamspace in terms of the angle range Θl cen-
tered on the direction θl. Given the sparseness and non-correlativity
of the source signals, φY,Ω,τ can be modeled as Eq. (3) [9], where
φΘ,Ω,τ ∈ C

L and DΩ : CL → C
L denote the CPSD of the sound

sources inside each Θl and the gains of the BFs to the beamspace.
φY,Ω,τ = DΩφΘ,Ω,τ (3)

We assume Θ1 is the target beamspace.

The relationship between the instantaneous powers calculated
frame-by-frame also obeys Eq. (3) if the sparseness of the source
signals is high. The DΩ can be calculated in advance by multiplying
the BFs and array manifold vectors [7]. Therefore, the instantaneous
powers of the sources in each beamspace φ̂Θ,Ω,τ can be estimated
from the BF outputs in real time by sequentially solving the inverse
problem of Eq. (3), as in Eq. (4).

φ̂Θ,Ω,τ = D−1
Ω φY,Ω,τ (4)

The speech CPSD φ̂S,Ω,τ and noise CPSD φ̂N,Ω,τ are derived
from φ̂Θ,Ω,τ [10]. Since observations in actual fields contain spa-
tially incoherent background noise as well as interference noise
(Eq. (1)), φ̂N,Ω,τ can be expressed as Eq. (5), where φinterf,Ω,τ and
φTbackg,Ω,τ denote the CPSDs of the interference sources and the
background noise inside the target beamspace, respectively.

φ̂N,Ω,τ = φ̂interf,Ω,τ + φ̂Tbackg,Ω,τ (5)
The CPSDs φ̂interf,Ω,τ are calculated as Eq. (6), where φ̂Nbackg,Ω,τ de-
notes the PSD of the background noise outside the target beamspace.

φ̂interf,Ω,τ =

L∑
l=2

φ̂Θl,Ω,τ − φ̂Nbackg,Ω,τ (6)

Assumed to be highly stationary, the background noise CPSDs
φ̂Tbackg,Ω,τ and φ̂Nbackg,Ω,τ are estimated as the minimum value in a
time interval [10]. The φ̂S,Ω,τ is calculated as Eq. (7).

φ̂S,Ω,τ = φ̂Θ1,Ω,τ − φ̂Tbackg,Ω,τ (7)

The output Zω,τ is obtained by applying a Wiener filter Gω,τ to
the target directional signal Y1,ω,τ output by the BF, as in Eq. (8).

Zω,τ = Gω,τY1,ω,τ (8)
The Gω,τ is obtained with the estimated speech and noise CPSDs,
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Fig. 2. Integration technique of PSD-estimation-in-beamspace and
statistical model-based speech enhancement

as in Eq. (9), where the frequency scale is mapped from Ω to ω.

Gω,τ =
φ̂S,Ω,τ

φ̂S,Ω,τ + φ̂N,Ω,τ

(9)

3. PROPOSED TECHNIQUE

The aforementioned PSD-estimation-in-beamspace method is used
to design a Wiener filter deterministically using only spatial cues
and the given sparseness of the sound sources. However, the esti-
mation errors of the target and noise CPSDs increase and result in
musical noise or signal distortion when noise levels are high and
the source sparseness is low. To overcome this problem, we investi-
gated ways of integrating PSD-estimation-in-beamspace and statis-
tical model-based speech enhancement by using statistical models as
prior knowledge about the target speech. With these statistical mod-
els, we can accurately preserve the characteristics of speech spectra
even in very noisy environments with many noise sources.

The overview of the proposed technique is shown in Fig. 2. The
Wiener filter is improved despite there being a few errors in φ̂N,Ω,τ

in noisy environments if precise statistical models of the target BF
output, referred to as observation models, can be obtained by sequen-
tially integrating statistical speech models and the estimated noise
CPSD.

3.1. Model composition of the target BF output

The statistical clean speech model is an ergodic hidden Markov
model (HMM) with two internal states, i.e., states of silence (j = 1)
and speech (j = 2), where j denotes the state index. Each state
is modeled in advance by a Gaussian mixture model (GMM) with
K Gaussian components in a I-dimensional logarithmic CPSD
(LCPSD) domain as Eq. (10).

φlog
τ � {log (φΩ,τ )}I−1

Ω=0 (10)
Each state model has model parameters MS , as in Eq. (11), where
λj,k, μj,k, Σj,k, and σ2

Ω,j,k denote the mixture weight, mean vector,
diagonal variance matrix, and variance, respectively.

MS = {λS,j,k, μS,j,k, ΣS,j,k}
�

{
λS,j,k, {μS,Ω,j,k}I−1

Ω=0 , diag {σS,Ω,j,k}I−1
Ω=0

}
(11)

The k denotes the index of the Gaussian component.
The time varying parameters of the observation models in the

LCPSD domain MY,τ are expressed by Eq. (12).
MY,τ = {λY,j,k, μY,τ,j,k, ΣY,j,k}

�
{
λY,j,k, {μY,Ω,τ,j,k}I−1

Ω=0 , diag {σY,Ω,j,k}I−1
Ω=0

}
(12)

With the model parameters of clean speech MS and the estimated
noise CPSD φ̂N,ω,τ , the time varying parameters of the observation
models are sequentially composed by using zeroth order vector Tay-

605



lor series composition [12], as in Eqs. (13)–(15).
λY,j,k = λS,j,k (13)

μY,Ω,τ,j,k = log
{
exp (μS,Ω,j,k) + φ̂N,Ω,τ

}
(14)

ΣY,j,k = ΣS,j,k (15)

3.2. Wiener filter calculation based on Bayes’ theorem

There have been a number of studies on designing Wiener filters
on the basis of statistical models [14–16]. The proposed technique
applies one of these techniques, which calculates the Wiener filter in
the CPSD domain by simply following Bayes’ theorem [14, 16].

After model composition of Sec. 3.1, the Wiener filter is de-
signed by using the model parameters of the speech MS and the
target BF output MY,τ . Each model has J states, and each state
consists of K Gaussian components. The Wiener filter is calculated
using Eq. (16) if the I-dimensional LCPSD vector of the current tar-
get BF output φlog

Y1,τ
is deterministically known to belong to the j-th

state and k-th Gaussian component.

GProp,Ω,τ,j,k =
exp (μS,Ω,j,k)

exp (μS,Ω,j,k) + φ̂N,Ω,τ

(16)

In contrast to Eq. (9), the estimated target speech CPSD φ̂S,Ω,τ is
substituted with the exponential mean contained in the clean speech
model exp (μS,Ω,j,k) in Eq. (16).

However, φlog
Y1,τ

would belong to every state and every compo-
nent with a certain probability. Therefore, the Wiener filter is ex-
pressed as Eqs. (17) and (18) by weighted summing GProp,Ω,τ,j,k

w.r.t. each state and each Gaussian component depending on the
posterior probability.

GProp,ω,τ =

J∑
j=1

K∑
k=1

P
(
j, k

∣∣∣φlog
Y1,τ

)
· GProp,Ω,τ,j,k (17)

P
(
j, k

∣∣∣φlog
Y1,τ

)
= P

(
j
∣∣∣φlog

Y1,τ

)
P
(
k
∣∣∣j,φlog

Y1,τ

)
(18)

The P
(
j, k

∣∣∣φlog
Y1,τ

)
denotes the posterior probability w.r.t. the j-th

state and k-th Gaussian component.
From Bayes’ theorem, the P

(
k
∣∣∣j,φlog

Y1,τ

)
is expressed as

Eq. (19).

P
(
k
∣∣∣j,φlog

Y1,τ

)
=

p
(
φlog

Y1,τ
|j, k

)
P (k |j )∑K

k=1 p
(
φlog

Y1,τ
|j, k

)
P (k |j )

(19)

To calculate P
(
k
∣∣∣j,φlog

Y1,τ

)
, the likelihood of the correspond-

ing Gaussian component p
(
φlog

Y1,τ

∣∣∣ j, k) is calculated as Eq. (20),
where N (·|·) denotes the probability density function of the multi-
variate Gaussian distribution.

p
(
φlog

Y1,τ

∣∣∣ j, k) = N
(
φlog

Y1,τ

∣∣∣μY,τ,j,k,ΣY,j,k

)
(20)

The P (k|j) is regarded as Eq. (21).
P (k|j) = λY,j,k (21)

The P
(
j|φlog

Y1,τ

)
is derived as Eq. (22), unlike the general

method that computes it sequentially with the HMM’s state transi-
tion probability.

P
(
j
∣∣∣φlog

Y1,τ

)
=

{
1−Gω,τ (j = 1)

Gω,τ (j = 2)
(22)

Therefore, it is not necessary to train the HMM’s state transition
probability in advance while its output probability is trained as the

Table 1. Type and angle of interference noise

Test Type Angle, θN
1 speech 90◦

2 speech 45◦

3 music 45◦

3 m

2 m

Background
noise

Background
noise Background

noise

Background
noiseBackground

noise
Background
noise

Interference
Target Interference

45
1 m

6.6 m

4.6 mRoom height
Source height
Array height

: 2.7 m
: 1.2 m
: 1.2 m

Array
structure

45

Beamspace 1

Fig. 3. Noise and impulse response measurement setup to create
evaluation data simulating microphone array observation

conventional technique [16].
Finally, the Wiener filter is obtained by substituting Eqs. (16), (19)

and (22) into Eq. (17).

4. EXPERIMENT

The performance of the proposed technique was investigated by
evaluating the output SNR and comparing it with a conventional
technique [10] based on only spatial cues.

4.1. Setup

The microphone array consisted of three cardioid microphones.
Each microphone was turned 120◦ from the others.

Evaluation data were obtained by simulating the microphone ar-
ray observation as follows. We measured the impulse responses of
the target and interference by using a set of microphone arrays in
a reverberant chamber. The measurement setup is shown in Fig. 3.
The measurements were carried out under two reverberation time
conditions to confirm that the proposed technique is effective in var-
ious environments. The angle between the target and interference θN
was set to 45◦ or 90◦. Clean speech signals and interference signals
were convolved with the recorded impulse responses to make the
target sound and interference noise. Table 1 summarizes the inter-
ference source types and angles with the target. Three different types
of background noise that had been recorded in offices, shopping cen-
ters, and exhibition halls were played from the loudspeakers against
a wall. The impulse responses and background noise were measured
at different times with the microphone array, and the target sound,
interference noise, and background noise were added with different
SNRs through simulation. The background noise level was varied
from −10 to 10 dB compared to the target, while the interference
noise level was the same as the target.

We trained the clean speech models by using a training set of
the WSJ0 corpus [22]. The speech model had J = 2 states and each
state had K = 64 Gaussian components. The feature parameters of
the speech model were I = 40-dimensional LCPSDs.
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Table 2. Experimental conditions

Sampling rate 16 kHz
# of microphones, M 3
# of interference noise, Q 1
Angle, θN 45◦, 90◦

Target source distance 1.0 m
Background noise level to speech level −5, 0, 5, 10 dB
Reverberation time (1 kHz) 230, 350 ms
Frame length 32 ms
Frame shift 16 ms
# of HMM states, J 2
# of Gaussian mixtures, K 64
# of filter bank channels, I 40
Training data WSJ0

-5 0 5 10 -5 0 5 10 -5 0 5 10
0

5

10

15

Background noise level (dB)

O
ut

pu
t S

N
R

 (d
B

)

Test 1 Test 2 Test 3

conv. prop.

Fig. 4. Experimental evaluation results of output SNR

Fig. 5. Target signal

Clean data for evaluation was taken from the evaluation set of
the WSJ0 corpus. Eight utterances were used for the target speech
and 64 were used for the interference. They had been spoken by four
males and four females. Sixteen utterances were evaluated under
each noise condition. Table 2 summarizes the experimental condi-
tions.

4.2. Results

Fig. 4 summarizes the results of the SNR evaluation, averaging
the results corresponding to the two reverberation time conditions.
Fig. 5 shows the waveforms and spectrograms of the target signal
and Figs. 6–8 show those of captured and output signals, respec-
tively.

The background noise levels indicated on the horizontal axis of
Fig. 4 do not include the interference noise level; thus, the total noise
levels were higher than these values. The output SNR includes both
the interference noise and background noise. From Fig. 4, it was
confirmed that the proposed technique successfully outperformed
the conventional technique in terms of noise reduction performance
under all experimental conditions. As seen in Fig. 4, the output SNR
did not improve very much in Test 2, where the angle between the
target and interference was 45◦. In Test 2, it was difficult to separate
the interference by spatial cues and speech model since the source
was speech. However, the interference was reduced in Test 3, where
the source was music, even though the angle between the target and
interference was 45◦. It should be noted from the preliminary listen-

Fig. 6. Output signal (Test 1)

Fig. 7. Output signal (Test 2)

Fig. 8. Output signal (Test 3)

ing test that musical noise occurred in the output of the conventional
technique drastically reduced with the proposed technique.

5. CONCLUSION

We proposed a technique that integrates the PSD-estimation-in-
beamspace method and statistical model-based speech enhance-
ment. The observation models were composed of speech models
and noise PSDs estimated using the PSD-estimation-in-beamspace
method. A Wiener filter was designed based on Bayes’ theorem
using the observation models and beamforming output. The exper-
imental results in several different noise environments showed that
SNR improved compared with the conventional technique under all
experimental conditions. Future work should include sound quality
evaluations by using formal listening tests.
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