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ABSTRACT

In reverberant environments, Listening Room Equalization (LRE) by
pre-filtering of loudspeaker signals is highly desirable for premium
sound reproduction systems with a high number of loudspeakers.
In this contribution, the efficient concept of LRE by wave-domain
adaptive filtering is extended by deriving generalized loudspeaker
signal transforms for loudspeaker arrays with an irregular azimuthal
spacing. In particular, a matrix approximation allows to restore the
unitarity property of a transform matrix which lost the unitarity when
applied to irregular arrays instead of regular ones. Simulations of
adaptive LRE systems with irregular loudspeaker arrays confirm the
efficacy of the proposed, novel, generalized transforms.

Index Terms— WDAF, Wave Domain, Azimuthally Irregular
Arrays, Spatial Transforms, Equalization

1. INTRODUCTION

Premium sound reproduction systems employ a high number of
loudspeakers in order to reproduce a virtual acoustic scene in a
spatially extended listening area [1–11], or to produce multiple
acoustically bright and dark zones, allowing to convey different
acoustic scenes to multiple listeners in the same physical envi-
ronment [12–15]. The reproduction performance of such systems
severely degrades in typical listening environments with reflective
walls and objects, as each reflection of the played-back signals
can re-enter listening and quiet zones in an unpredictable way. As
countermeasure, LRE by pre-filtering the loudspeaker signals is
highly desirable. To this end, the time-varying acoustical prop-
erties of the actual listening environment are typically inferred
employing adaptive filters, which identify Impulse Responses (IRs)
between the loudspeakers and microphones at control points within
or around the listening zones. Afterwards, a pre-equalizer can be
determined from the estimated Room Impulse Responses (RIRs)
of the Loudspeaker-Enclosure-Microphone System (LEMS). This is
depicted schematically in Fig. 1 for the typical case of a combination
with an Acoustic Echo Cancellation (AEC) unit to allow for a voice
control of an entertainment system or for hands-free communica-
tion. As the system identification for LRE is structurally identical to
the one of AEC, all challenges of multichannel AEC apply to LRE
as well: the high computational complexity to identify the NL ·NM

acoustic paths between the NL loudspeakers and each of the NM

microphones, as well as the so-called non-uniqueness problem [16],
which means that the typically highly correlated loudspeaker signals
preclude a unique identification of the RIRs of the LEMS.

Alleviating both problems, the concept of Wave-Domain Adap-
tive Filtering (WDAF) has been proposed for AEC and LRE by
Buchner et al. [17] and Spors et al. [18] and has been refined and ex-
tended since then [19–24]. WDAF allows to exploit prior knowledge
about typical couplings between spatially transformed loudspeaker
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Fig. 1: Application scenario of LRE, where the reflections (green)
of the loudspeaker signals (blue) are to be canceled in the listening
area (orange) by exploiting reference microphones (red), which can
also be employed for voice-control of the entertainment system or
hands-free communication when being combined with an AEC unit.

and microphone signals to alleviate the non-uniqueness problem
and to reduce the computational complexity by just considering
a subset of couplings between the inputs and outputs of the in-
volved transform-domain Multiple-Input/Multiple-Output (MIMO)
systems [22].

Other approaches to maintain the rendering performance in re-
verberant environments require a dedicated calibration phase where
the IRs from the actual acoustical environment are measured to allow
for a dedicated design of the rendering system for the actual environ-
ment [5–7] and thus cannot follow the natural time-variance of the
environment. Further approaches aim at reshaping RIRs in order to
dereverberate only a perceptually relevant part of a known single-
channel RIR [25]. Others aim at crosstalk cancellation for multiple
but isolated points in space [26–28], some also in conjunction with
the aforementioned impulse response reshaping [29]. Recently, an
approach aiming at a correct synthesis of binaural cues while con-
sidering the desired acoustics of the recording room and the playback
room jointly has been proposed in [30]—also an approach consider-
ing only isolated points in the listening zone.

As opposed to this, WDAF LRE is able to adaptively equal-
ize entire listening zones of a Wave Field Synthesis (WFS) or Am-
bisonics (recently adopted for MPEG-H standard [31, 32]) systems.
Therefore, this contribution extends the highly efficient concept of
WDAF LRE [21–23] to loudspeaker arrays with irregular azimuthal
spacing. To this end, the state-of-the-art wave-domain transforms
are revisited in Sec. 2. Then, Sec. 3 explains WDAF LRE, inves-
tigates the impact of irregular azimuthal loudspeaker spacing, and
introduces the novel, generalized transforms. These transforms are
evaluated in Sec. 4, before Sec. 5 concludes the presented work.

2. STATE-OF-THE-ART WAVE-DOMAIN TRANSFORMS

This section summarizes the wave-domain transforms as key com-
ponent for WDAF. These are linear transforms and perform a scalar
product between a sound field (actually its spatially and temporally
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sampled version) and a set of spatial basis functions which result
from elementary solutions to the acoustic wave equation. Thus,
the transform domain is termed ’wave domain’ and the transform-
domain signals are called wave-domain signals or, as they represent
the intensity of particular modes within the analyzed sound field,
they are often referred to as microphone and loudspeaker modes.
The original domain, characterized by impulse responses or transfer
functions between individual points in space, will be referred to as
transducer domain.

The wave-domain transforms after [22,24] decompose the wave
fields into expansion coefficients with respect to circular harmonics
[33], which form an orthogonal basis for the solutions of the acous-
tic wave equation in cylindrical coordinates. For these transforms,

consider an NL-element loudspeaker array with the lth loudspeaker
(l ∈ {0, . . . , NL − 1}) at radius ̺L,l and azimuth angle ϕL,l, sum-

marized by the vector [̺L,l, ϕL,l]
T. Furthermore, consider an NM-

element circular microphone array with the mth microphone (m ∈
{0, . . . , NM − 1}) located at [̺M,m, ϕM,m]T = [RM,

2π
NM

m]T. Af-

ter wave-domain transforms, the signals can be indexed by the non-

negative wave-domain indices l̃ ∈ [0, NL −1] and m̃ ∈ [0, NM −1],

which are related to the mode numbers l̊ and m̊ of the spatial basis

functions by l̃ = (̊l mod NL) and m̃ = (m̊ mod NM). Further-
more, let T2 denote the microphone signal transform and T1 denote
the loudspeaker signal transform, each of which consists of a for-

ward and a backward transform, denoted as transforms Tf
2, Tb

2, Tf
1,

and Tb
1, respectively. In this notation, discrete-time representations

of Tf
2 and Tb

2 after [22] are described by a MIMO system with the
single-tap IRs

hT2f
m̃,m(k) = δ(k) 1√

NM

e
−j

2π
NM

m̊m
(1)

hT2b
m,m̃(k) = δ(k) 1√

NM

e
j
2π
NM

m̊m
(2)

with the discrete-time sample index k and the unit impulse δ(k),
which obviously represents a Discrete Fourier Transform (DFT) of
the NM microphone signals at a given time instant.

The corresponding loudspeaker signal transform of [22] requires
fractional-delay filters [34] which model each loudspeaker signal’s
individual propagation to the microphone array origin. These frac-
tional delay filters are obtained by sampling properly delayed and

windowed si (·) functions, where si (k) = sin(k)
k

. With a window

function w(k) = 0 ∀k /∈ [0, LT1 − 1], the forward and backward
transform’s scaled fractional delay filters of length LT1 can be ex-
pressed as

hf
frac,l (k) = w(k) · 1

̺l
· si

(
k − ̺l

fS

cair

)

hb
frac,l (k) = w(k) · ̺l · si

(
k −

(
max

l
(̺l)− ̺l

)
fS

cair

)
,

where cair is the sound speed and maxl(̺l) introduces a delay for
causality. The loudspeaker signal transform’s IRs after [22] finally
result in

hT1f

l̃,l (k) = hf
frac,l (k) · j

l̊ 1√
NL

e
−j̊lϕl (3)

hT1b

l,l̃
(k) = hb

frac,l (k) · j
−l̊ 1√

NL

e
j̊lϕl . (4)

When omitting the common discrete-time normalized angu-
lar frequency variable Ω in the Discrete-Time Fourier Transform
(DTFT) domain, the IRs of Eqs. (1) to (4) can be expressed as

transfer function matrices Tf
2, Tb

2, Tf
1, and Tb

1, respectively. Anal-

ogously, H and H̃ denote the transfer function matrices of the LEMS
and of the wave-domain LEMS, respectively. The equivalence of the
resulting wave-domain representation and the transducer-domain
representation of an LEMS is illustrated in Fig. 2. Therein, x and
d, denote transducer-domain loudspeaker and microphone signal

T
f
1 H̃ T

b
2

Tb
1 H Tf

2

x x̃ d̃ d

︸ ︷︷ ︸

x̃ x d d̃

︷ ︸︸ ︷

Fig. 2: Relation between wave-domain LEMS H̃ and transducer-

domain LEMS H and the roles of the wave-domain transforms Tf/b
1/2

with respect to the LEMS for perfectly invertible wave-domain trans-
forms. Equivalent systems are highlighted by a commonly colored
background and brackets.
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ẽSIẽEQ

x

−

−
+

+

̂̃
Hc(k)

G̃(k)

Fig. 3: Efficient wave-domain LRE. The signals actually played
back and recorded are marked by a loudspeaker and a microphone
symbol, respectively.

vectors, respectively, and x̃ and d̃ denote wave-domain loudspeaker
and microphone signal vectors, respectively. The wave-domain
transforms allow a conversion between LEMS representations by

H = T
b
2H̃T

f
1 (5)

H̃ = T
f
2HT

b
1. (6)

Note that Eq. (5) implicitly defines the discrete-time wave-domain

LEMS H̃ as the transforms are fixed, while Eq. (6) results from

Eq. (5) by pre- and post-multiplication with transform matrices Tf
2

and T
b
1 under the assumption that forward and backward transforms

invert each other. However, if the forward and backward transforms
would not be strictly inverse up to a delay, Eq. (6) may only yield a

filtered version of the ideal wave-domain representation of H̃. Po-

tentially different delays introduced by each of the transforms Tf
1, Tb

1,

Tf
2, and Tb

2 can lead to a temporal shift of the system representation.
In any case, the delays are given by the system design and could
be compensated for if a time-aligned conversion between transducer
and wave domain systems is needed. Note that NM 6= NL only
changes the dimensions of the involved matrices, but not the validity
of Eqs. (5) and (6), as all transform matrices remain square.

3. WAVE-DOMAIN LRE AND LOUDSPEAKER ARRAYS
WITH IRREGULAR AZIMUTHAL SPACING

The signal model for an adaptive wave-domain LRE system is de-
picted in Fig. 3. At first, the unprocessed loudspeaker signal x

is transformed to the wave domain by T
f
1, filtered by the adaptive

wave-domain equalizer G̃(k), and transformed back into equalized

loudspeaker signals by T
b
1 before they can pass the physical LEMS

H. After capturing the microphone signals, these are transformed

into the wave domain by T
f
2. As the block diagram of Fig. 3 results

from the so-called filtered-X structure [35], the computation of the
pre-equalizer is split into two parts: first, a filtered version of the
LEMS containing the cascade of the forward and backward trans-
form,

H̃c = T
f
2 H T

b
1 (7)

(5)
= T

f
2T

b
2H̃T

f
1T

b
1, (8)

has to be identified by employing the system identification error sig-

nal ẽSI. Afterwards,
̂̃
Hc(k) is employed to compute the inverse filters
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hT1f
frac Af = A ≈ FNL

x x̃

(a) Forward transform Tf
1 of Eq. (3).

Ab = AH ≈ FH
NL

hT1b
frac

x̃ x

(b) Backward transform Tb
1 of Eq. (4).

Fig. 4: Decomposition of discrete-time loudspeaker signal trans-
forms into NL SISO fractional delay systems and single-tap spatial
mixing matrices.

by adaptively minimizing the equalization error signals ẽEQ. These
error signals ẽEQ are obtained as difference between the actual and
the desired wave-domain microphone signals, where the latter ones

are determined with the desired wave-domain system H̃0 as refer-
ence. Previous investigations [22] proved the applicability of ap-
proximate wave-domain models for the involved MIMO systems in
order to reduce the computational complexity. In particular, a wave-

domain LEMS model where only couplings with |m̊ − l̊| < ND

2
are

modeled will be denoted as model with ND diagonals and has been
shown to be effective with a low number of diagonals already in [21].

3.1. Impact of Azimuthally Irregularly Spaced Loudspeaker
Arrays

As depicted in Fig. 4, both Tf
1 and Tb

1 can be decomposed into two
subsystems. For the former (Fig. 4a), the first subsystem consists of
the NL fractional delay filters of Eq. (3) (without inter-loudspeaker

coupling), stacked in a transfer function vector hT1f
frac. The second

subsystem is a spatial mixing matrix A
f = A = [al̃,l] with the

elements al̃,l = 1/
√
NL · jl̊e−j̊lϕl . With this, the conversion of the

delayed loudspeaker signals to the wave-domain signals is then a

sample-wise matrix multiplication of the former signals with Af.
Consequently, the inverse transform (depicted in Fig. 4b) consists

of a spatial de-mixing matrix A
b = A

H and a subsequent set of

fractional delay filters in hT1b
frac . In case of uniform radii ̺l = RL, the

delay filters are identical for all loudspeakers and can therefore be
neglected. For loudspeaker arrays with uniform azimuthal spacing,

A = [al̃,l] = FNL
with al̃,l =

jl̊√
NL

e
−j

2π
NL

l̊l
(9)

equals a unitary DFT matrix FNL
[36]1. In case of azimuthal ir-

regularities, the complex harmonics constituting the columns of A
are not sampled equidistantly, and are therefore not orthogonal any-
more and thus do not correspond to a DFT matrix anymore (so that
the approximate signs in Fig. 4 become necessary). This resembles
a nonuniform DFT [37–39], where a uniform temporal (or spatial)
sampling is possible, but the frequency-domain support points are

nonuniformly distributed. Furthermore, Ab =
(
Af

)H 6=
(
Af

)−1

leads to T
f
1T

b
1 6= I, which means that the backward transform of

T1 according to Eq. (4) does not invert the forward transform ac-

cording to Eq. (3). As the potentially fully coupled matrix Tf
1T

b
1 is

part of H̃c in Eq. (8), H̃c can be expected to have broader couplings
than for a uniformly spaced loudspeaker setup. The lost inverse rela-
tionship also has to be considered when pre-processing loudspeaker
signals in the wave domain, as the pre-processed loudspeaker sig-
nals have to be reconstructed from their wave-domain representa-
tion prior to playback. LRE is obviously an application which re-
quires this (see Fig. 3). Along with the loss of orthogonality, the
condition number [40] of A increases as well, which precludes the

use of a numerically determined inverse A
−1 as it would severely

amplify adaptation errors—with highly undesired effects for both
users and loudspeakers of an LRE system. To give an example,
the blue loudspeaker array of Fig. 5 leads to a condition number of

C = 1.67 × 103, while a corresponding uniform array has C = 1.

1Equality holds up to row-wise multiplications with powers of j, which is
merely a phase shift of the basis functions.

3.2. Generalized Wave-Domain Transforms for Azimuthally Ir-
regularly Spaced Transducers

In this section, the lost inverse relationship of Tf
1 and Tb

1 of the state-
of-the-art loudspeaker signal transform, denoted as T1-A, will be
tackled by introducing novel, generalized loudspeaker signal trans-
forms T1-R, and T1-H. These improved transforms differ in terms

of the spatial transform matrices Af/b employed during the forward
and backward transform (see Fig. 4). These generalized transforms
aim at increased LRE performance by an improved reconstruction
of loudspeaker signals from modes and more accurate approxima-

tions of H̃c according to Eq. (8) with just a few diagonals ND for
azimuthally irregular loudspeaker arrays.

T1-A: State-of-the-Art transform: The transform matrices Af =
A and A

b = A
H resulting from Eqs. (3) and (4) will be referred

to as A
f
A and A

b
A, respectively. Although both the forward and the

backward transform have the same and potentially large condition
number due to closely spaced loudspeakers, this does not lead to
numerical problems for the inverse transform, but to inaccurate so-

lutions with a low 2-norm, because low singular values in Af
A are

not inverted by the backwards transform. These transform matrices

A
f
A and A

b
A are employed as components of T1-A.

T1-R: Re-orthogonalized transform: Recall that uniformly
spaced arrays result in a DFT matrix as spatial transform matrix,
which has a condition number of C = 1. This desired property can
be employed to formulate an optimization problem for an approx-
imate loudspeaker signal transform. The spatial transform matrix
can be approximated by a unitary matrix with Frobenius norm
optimality, which can be written as optimization problem

A
f
R = argmin

A

∥∥∥Af
A −A

∥∥∥
F
, s.t. A

H
A = I, (10)

where ‖ · ‖F denotes the Frobenius norm of a matrix. According
to [41, p. 601], this is achieved by

A
f
R = UV

H, (11)
with unitary matrices U and V from the Singular Value Decompo-

sition (SVD) A
f
A = UΣV

H, where Σ is the diagonal matrix of

singular values. The product UVH is also known as polar factor of

the polar decomposition [40] of Af
A and describes a rotation—the

component of Af
A describing a stretching is discarded. Hence, the

vector spaces between which the mapping takes place are similar for
T1-A and T1-R (they actually share the same basis vectors in U and

VH). Thus, the re-orthogonalized transform T1-R, can be expected

to retain most of the spatial properties of T1-A. As Af
R is a unitary

matrix, its inverse can be determined without numerical problems
and is simply given by

A
b
R =

(
A

f
R

)−1

=
(
A

f
R

)H

= VU
H. (12)(13)

Still, the wave-domain coefficients determined by Af
R will have

a larger deviation from the true loudspeaker modes than for A
f
A.

Thereby, this approach trades modeling accuracy for numerically
stable inversion. Note that, while a subunit of a spatial transform is
being approximated by a unitary transform here in order to obtain
the signal-independent transform T1-R, a similar procedure has been
applied in [42] for the approximation of filterbank transfer matrices,
taking into account the single-channel signal’s autocorrelation as
well.

T1-H: Hybrid transform: Additionally, consider the transform
pair with the spatial transform matrix combination

A
f
H = A

f
A (14)

A
b
H = A

b
R, (15)

which is justified because Ab
RA

f
A = VΣVH is even closer to an

identity matrix than A
b
AA

f
A = VΣ

2
V

H. Therefore, a performance
increase of T1-H with respect to T1-A can be expected. Additional

approximation errors like for Af
R are prevented.
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Fig. 5: Arrays in an image-source environment: microphones are ar-
ranged around the listening area as uniform circular array (red) and
the loudspeakers are placed irregularly but concentrically on a circle
(blue). The latter array resulted from the projection of an amorphous
irregular array onto a circle.

3.3. Performance Measures for LRE

In this section, objective performance measures for LRE systems
will be specified. First of all, the performance of an LRE system
can be measured by the difference between the actually reproduced
sound field and the desired one, sampled by microphones at discrete
spatial locations. To this end, the set of error microphones required
for adapting the LRE system can be employed again. For WDAF,
these error microphones are arranged as a ring of NM microphones
with central radius RM (red microphones in Fig. 5). With these,
the rendering-signal-dependent scene equalization errors can be
defined in the DTFT domain as

eM(k) = 10 log10

( ∫
2π

0
‖(HG(k)−H0)x‖

2
2

dΩ

e0

)
dB, (16)

which describes the energy of the deviation from the desired signal

after equalization with G(k) = T
b
1G̃(k)Tf

1, normalized to the re-
spective energy e0 without adapted equalizer filters G(k). Similarly,
a signal-independent measure, denoted as room equalization error,
can be computed from

EM(k) = 10 log10

( ∫
2π

0
‖HG(k)−H0‖

2
F dΩ

E0

)
dB. (17)

It measures the logarithmic ratio between the Frobenius norm of
the undesired signal components with equalization (numerator) and
without equalization (E0 in denominator). While a low system
equalization error EM(k) (signal-independent measure) implies a
low scene equalization error eM(k) (signal-dependent measure) as
well, a low scene equalization error does not ensure a low system
equalization error. This means that the actual scene might be re-
produced very well although the actual LEMS is not identified and
equalized correctly. For evaluation, Eqs. (16) and (17) will be com-
puted (employing Parseval’s theorem) in the time domain and the
time-dependency will be dropped, as the measures will be computed
with the filters at the end of a simulation with k = kfinal.

4. EXPERIMENTAL RESULTS

The system to be equalized in the following experiments is a 2nd-
order image source environment [43] in which a circular loudspeaker
array and a circular microphone array with NM = NL = 48 ele-
ments and radii of RL = 1.5m and RM = 0.5m are placed centered
at the origin of the coordinate system, respectively, as depicted in
Fig. 5. The image-source environment is composed of four plane
walls with a reflection coefficient of rwall = 0.9, while floor and
ceiling are modeled as fully absorptive. The simulations will be con-
ducted at a sampling rate of fS = 2000Hz, for which the sound field
can be controlled by the loudspeakers reasonably well (an exact spa-
tial aliasing frequency cannot be given for the irregular array: instead
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Fig. 6: Benefit for LRE by employing the re-orthogonalized T1-R
(⋄) or T1-H (×) instead of T1-A (+) for an azimuthally irregular
loudspeaker placement for NS = 3 virtual sources. As reference,
the corresponding experiment for a uniform loudspeaker array (◦) is
included as well.

of periodic repetitions, noise-like artifacts increase with frequency
for irregular spatial sampling [44]). In the experiments, WFS [10]
is employed to synthesize NS = 3 virtual plane waves. The plane
waves carry mutually independent white Gaussian noise signals and

impinge with an angular spacing of 2π
NS

onto the microphone array.

To assess the suitability of approximate wave-domain models, the
number of diagonals ND (see Sec. 3) for the wave-domain mod-
els is varied between ND = 1 and ND = 48. The estimation of
the LEMS and the adaptation of the equalizer filters has been per-
formed with the modified Generalized Frequency-Domain Adaptive
Filtering (GFDAF) algorithm according to [23]. Figure 6 depicts the
performance measures for the state-of-the-art T1-A (+), the novel
transforms T1-R (⋄) and T1-H (×), and for a uniform loudspeaker
array (◦) with the same RL = 1.5m. The latter has been included
as reference, for which all three generalized transforms according to
Sec. 3.2 are identical. Furthermore, e0 and E0 have been determined
for the uniform loudspeaker setup and used for the irregular setups
as well, which allows a direct assessment of the performance loss
due to irregular geometries.

As expected, the best performance is achieved by a WDAF LRE
with Uniform Circular Concentric Arrays (UCCAs) (◦) —both in
terms of scene equalization (upper plot in Fig. 6) and in terms of
room equalization (bottom plot in Fig. 6). The increasing room
equalization errors in case of ND ≫ 3 can be accounted to an over-
adaptation to the virtual scene (analogously to the non-uniqueness
problem of multichannel AEC [16]). The other extremal case is
given by the irregular loudspeaker array in combination with the
state-of the art transform T1-A (+), which achieves a moderate
equalization of the played-back virtual scene (eM), but which to-
tally fails to equalize the actual impulse responses of the room in
this experiment (positive error measures EM). The novel transform
T1-H (×) with improved inverse transform clearly outperforms the
state-of-the-art transform. Still, the fully re-orthogonalized T1-R (⋄)
clearly performs best for the irregular loudspeaker array, although a
moderate degradation with respect to the UCCAs has to be accepted.

5. CONCLUSION

In this work, the wave-domain transforms based on circular har-
monics have been extended for loudspeaker arrays with irregular az-
imuthal spacing. For this case, a new re-orthogonalized transform
and a hybrid transform have been proposed which significantly im-
prove LRE performance over the state-of-the-art transform for an
irregular/nonuniform loudspeaker spacing and are identical to the
state-of-the-art transform for a uniform spacing. Best performance
for irregular arrays is obtained with the fully re-orthogonalized trans-
form, which shows that the exact invertibility of this transform out-
weighs the additional approximation with respect to the hybrid trans-
form.
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