
CONVOLUTIONAL NEURAL NETWORK FOR
ROBUST PITCH DETERMINATION

Hong Su, Hui Zhang, Xueliang Zhang, Guanglai Gao

Department of Computer Science, Inner Mongolia University, Hohhot, China, 010021
suhong90 imu@qq.com, alzhu.san@163.com, cszxl@imu.edu.cn, csggl@imu.edu.cn

ABSTRACT

Pitch is an important characteristic of speech and is useful
for many applications. However, pitch determination in noisy
conditions is difficult. In this paper, we propose a supervised
learning algorithm to estimate pitch using a convolutional
neural network (CNN). Specifically, we use a CNN for
pitch candidate selection, and dynamic programming for
pitch tracking. Our experimental results show that the
proposed method can obtain accurate pitch estimation and
they show good generalization ability to new speakers and
noisy conditions. We credit the success to the use of CNN,
which is suitable for modeling the shift-invariant spectral
feature for pitch detection.

Index Terms— Pitch determination, convolutional neural
network, dynamic programming

1. INTRODUCTION

Pitch, or fundamental frequency (F0), is an important
characteristic of speech. It is useful for many applications,
such as speech separation, speech or speaker recognition
[1, 2]. Many algorithms are designed to determine pitch in
noise-free environments, however, there is still challenge in
the present of strong noise [3]. The most prominent difficulty
is the corruption of the speech harmonic structure, since most
of the existing algorithms rely on a clear harmonic structure
[4].

In general, the pitch determination task can be divided
into two steps: pitch candidate selection and pitch tracking.
Firstly, possible pitches of each frame are selected as
candidates. These candidates are selected independently
without consideration of other frames. Then a continuous
pitch contour is generated by tracking the selected pitch
candidates with the temporal continuity constraint. Dynamic
programming [5] or hidden Markov models (HMMs) [6]
are often adopted for pitch tracking. For pitch candidate
selection, signal processing methods, statistical models [7, 8],
and the summary autocorrelation function (ACF) [9] are
popular. These methods are mostly based on empirical
parameters which are not guaranteed to be optimum, or a
priori assumption on the noise which limits the application.
Inspired by the success of deep learning [10, 11], some

researchers select pitch candidates with deep models. Han
and Wang investigate the use of a deep neural network
(DNN) and recurrent neural network (RNN) for pitch
candidate selection [12]. In this study we propose using
the convolutional neural network (CNN). To our best
knowledge, this is the first study using CNN for robust pitch
determination.

We employ the CNN because of its shift-invariant
property, which means a pattern can be recognized regardless
of its position in the input. This shift-invariant property
could be useful in pitch determination. Figure 1 clarifies
the idea. There are many parallel lines in the spectrogram
indicating harmonics. We can see that the local patterns
of harmonic structure are similar along time and frequency
axis. Therefore, CNN can model the shift-invariance of local
patterns seen in a spectrogram.
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Fig. 1. Harmonic structure in spectrogram. The patterns in
small windows are shift-invariant (see the ones in the two
black boxes).

In this study, we utilize CNN for pitch detection. The
experimental results show that the proposed method can
obtain accurate pitch estimation and good generalization
ability to new speakers and noisy conditions.

This paper is organized as follows. We list the related
works in the next section. Section 3 gives the details of the
proposed method. The experimental results are presented in
section 4. We conclude the paper in section 5.
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2. RELATED WORKS

Numerous robust pitch detection algorithms have been
developed. These studies analyze the harmonic structure in
the frequency domain, in the time domain or in the time-
frequency domain.

The studies in the frequency domain extract the pitch
candidates from the spectrogram of the speech by assuming
that each peak in the spectrogram is the potential pitch
harmonic [13, 14]. Chu and Alan [5] propose a probabilistic
framework to model the effect of noise on voiced speech
spectra. The PEFAC [15] algorithm combines nonlinear
amplitude compression to attenuate narrow-band noise
components, with a comb-filter applied in the log-frequency
power spectral domain, whose impulse response is chosen to
attenuate smoothly varying noise components.

Some other methods consider the periodicity of the speech
in the time domain. YIN [16] uses the autocorrelation-
based squared difference function and the cumulative mean
normalized difference function calculated over voiced speech,
with little post-processing to acquire pitch candidates. RAPT
[17] and YAPPT [18] generate pitch candidates by extracting
local maxima of the normalized cross-correlation function
which is calculated over voiced speech.

A variety of temporal approaches extract pitch using the
periodicity of individual frequency subbands in the time-
frequency domain. In [8], Wu et al. model pitch period
statistics in less corrupted channels and then use a HMM
for extracting continuous pitch contours. Jin and Wang [6]
use cross-correlation to select reliable channels and derive
pitch scores from a constituted summary correlogram. Lee
and Ellis [19] utilize Wu et al.’s algorithm to extract the
ACF features and train a neural network on the principal
components of the ACF features for pitch detection. Huang
and Lee [7] compute a temporally accumulated peak spectrum
to estimate pitch.

3. SYSTEM DESCRIPTION

Similar to other studies, we divide the pitch determination
task into pitch candidate selection and pitch tracking. We
use CNN to select the pitch candidates, as described in the
following subsection. Then we use dynamic programming
for pitch tracking, as described in section 3.3.

3.1. Pitch Candidate Selection

Pitch candidate selection chooses the pitch values with high
probability. We model this probability distribution with a
CNN under a set of observed features. The harmonic structure
of spectrum is badly corrupted by the noise. Therefore
the feature used in PEFAC [15] is adopted, which shows
robustness to noise. We rearrange the original PEFAC
features from a logarithmic scale to a linear scale, since they
are shift-invariant in linear scale. By this, the harmonic

structure is represented by these parallel lines (Fig. 1), and
the distance between two adjacent parallel lines indicates the
pitch. With a linear scale, this distance is a constant, so that
these features in linear scale are shift-invariant. Furthermore,
the very exact location of the harmonics is not relevant in our
study, we just need to ascertain the pitch bins of the speech.

We set the target pitch frequency from 80 to 415 Hz, a
typical range that covers both male and female speech in daily
conversations. To simplify the modeling task, we quantize the
plausible pitch frequency into “pitch states” by using 24 bins
per octave in a logarithmic scale using [12].

s =
⌈
log2

( p

60

)
· 24

⌉
(1)

where p is the plausible pitch frequency, and s is the
corresponding state. We also incorporate a non-pitched
state corresponding to an unvoiced or speech-free frame.
Therefore, we have 59 pitch states: 1 state for the non-pitched
frame and the other 58 states for the pitched frame.

The output of the CNN is the probability on pitch states,
where each pitch state corresponds to a range of pitch
values. We convert this probability on pitch states into the
probability distribution on real pitch values by adopting a
Gaussian mixture model (GMM) framework. Probability
density function p(z) for a GMM can be written as:

p(z) =

K∑
k=1

αkN (z;µk, σ
2
k),where

K∑
k=1

αk = 1, αk ≥ 0 (2)

where αk are the coefficients, N (z;µk, σ
2
k) is a Gaussian

distribution, µk and σ2
k denote the mean and variance of it.

K is the number of components.
To select the pitch candidates, we first model each pitch

state with a Gaussian distribution whose mean, µk, is the
center frequency of this state, and the standard deviation, σk,
is half of its bandwidth. Then we select the top K pitch states
using CNN outputs. The corresponding (normalized) CNN
outputs are set to the GMM coefficients. We set K = 3
according to the development set. Finally, the probability
of real pitch values, p(z), is calculated with equation (2).
This probability will be utilized for pitch tracking by dynamic
programming, which is described in section 3.3. In next
subsection, we will describe the CNN used in this study.

3.2. CNN for Pitch State Estimation

In a standard CNN, a convolutional layer is followed by a
pooling layer. These layers are stacked up one by one into a
deep architecture. And the outputs of the last pooling layer
are feed into a fully-connected multi-layer perception (MLP)
for classification. The CNN used in this study is illustrated in
Fig. 2.

In this study, the speech sampling rate is 8000Hz and
window size is 320 of each frame. Since neighboring
frames contains useful information for pitch tracking, we also
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input feature

Fig. 2. Structure of the proposed CNN.

incorporate the frontal 7 frames and posteriori 8 frames into
the feature vector. Therefor, the feature size of the input is
160× 16. The CNN has 2 convolutional layers and 2 pooling
layers. The kernel size of the first convolutional layer is
5 × 5, which is suitable for capturing a discriminative and
shift-invariant feature from the inputs. The first convolutional
layer contains 10 kernels corresponding to 10 feature maps,
and the second convolutional layer contains 20 kernels, whose
size is 5 × 5. After the second convolutional operation, 200
feature maps are generated by 20 kernels fully connected with
the 10 feature maps. The pooling layers in the study are
mean-pooling, whose size is 2 × 2. At last, outputs from
the last pooling layer are flattened into a vector and feed into
a MLP. The MLP contains a sigmoid hidden layer with 500
nodes, and the output function of last layer is softmax. The
whole CNN is trained with RMSprop [20] against the cross-
entropy loss function. The architecture of CNN is selected by
a development set.

3.3. Pitch Tracking

Pitch tracking generates a continuous pitch contour by
maximizing the pitch probability under the temporal
continuity constraint of speech. The calculation of the
pitch probability on each frame was described in section
3.1. The other thing is modeling the temporal continuity
constraint, which does not allow the pitch to change by a
large amount. As suggested in [8], it can be modeled by a
Laplacian distribution:

pt(∆) =
1

2σ
exp

(
−|∆− µ|

σ

)
(3)

where ∆ represents the change of pitch period from one frame
to the next. We limit |∆| ≤ 20 to further reduce search space.
µ is a location parameter and σ>0 is a scale parameter. Here,
we set µ = 0.4 and σ = 2.4 by data analysis.

We generate the final continuous pitch contour by
maximizing both the pitch probability and the transfer

probability. This process is implemented by a dynamic
programming algorithm.

4. EVALUATION

4.1. Dataset

We use the Chinese National Hi-Tech Project 863 corpus
for our evaluation. The noises are: n1-machine operation,
n2-cocktail party noise, n3-factory noise, n4-siren, n5-
speech shaped noise, n6-white noise, n7-bird chirp, n8-
cock crow, n9-crowd cheer, n10-babble noise, n11-sound
of engine start, n12-alarm, n13-sound in playground, n14-
traffic noise, n15-sound of the flowing water and n16-sound
of wind, which are selected from [21]. These noises cover
a variety of daily noises. To take a further evaluation on the
generalization ability, another noise set from the IEEE AASP
audio classification challenge [22] is included. This noise set
is widely used and includes 10 types of noises, which are
denoted as n17-n26.

For our experiments, we setup the training set by
randomly selecting a female and a male speaker from corpus
and 50 utterances from each. These 100 utterances are mixed
with 6 types of noises (n1-n6) at 0 dB. Three test sets are
setup: speaker-dependent, speaker-independent and an audio
classification challenge (ACC) set. For the speaker-dependent
test set, another 40 utterances are selected from the same two
speakers (20 new utterance for each) as in the training set.
For the speaker-independent and the ACC test sets, another
40 speakers are used and 1 utterance is selected from each
speaker. All utterances are mixed with noises at -10, -5, 0
and 5 dB to generate the test set. The speaker-dependent and
speaker-independent test sets use the first 16 types of noises
(n1-n16). And the ACC test set uses the last 10 types of noises
(n17-n26). The noises n7-n26 are not included in the training
set. These noises form the unseen noisy conditions.

The ground truth pitch is extracted from the clean
utterance using Praat [23].

4.2. Evaluation Metrics

We evaluate the pitch tracking results in terms of two
measurements: accuracy rate(AR) on the voiced frames, i.e. a
pitch estimate is selected if the deviation of the estimated F0
is within ±5% of the ground truth F0. Another measurement
is the voicing decision error (VDE) [19] indicating the
percentage of frames are misclassified in terms of pitched and
non-pitched as defined:

AR =
N0.05

Np
, V DE =

Np→n +Nn→p

N
(4)

where, N0.05 denotes the number of frames with the pitch
frequency deviation smaller than 5% of the ground truth
frequency. Np→n and Nn→p denote the number of frames
misclassified as non-pitched and pitched, respectively. Np
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Fig. 3. Performance comparisons. First row: accuracy rate. Second row: voicing decision error. 1st and 2nd column: speaker-
dependent test set. 1st column: seen noises condition. 2nd column: unseen noises condition. 3rd and 4th column: speaker-
independent test set. 3rd column: seen noises condition. 4th column: unseen noises condition. 5th column: audio classification
challenge test set.

and N are the number of pitched frames and total frames
in a sentence. High AR and low VDE indicate better pitch
estimation.
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Fig. 4. Example output of the proposed pitch detection
method. (a) CNN output. (b) Pitch tracking output. The
example mixture is a male utterance which is mixed with
machine noise at 0 dB.

4.3. Evaluations

We compare our approaches with three recently proposed
pitch determination algorithms: Jin and Wang [6] (denoted as
‘Jin’), PEFAC [15] (denoted as ‘PEFAC’) and a DNN method
[12] (denoted as ‘DNN’). The code of the first two methods is
provided by their authors and we implement the DNN method
based on [12].

We first give an example output of our pitch detection
method in Fig. 4. Figure 4(a) shows the CNN output, which
is the estimated pitch states. We can see that the highest
probability of CNN outputs are almost always on the blue
line which is the ground truth pitch state. It indicates that
the CNN can generate high accuracy pitch state estimates. In

Fig. 4(b), we simply select the pitch state with the highest
probability, and output its center frequency as the final output.
This result shows in black dotted line. We can see some
outliers which are caused by errors in pitch state estimations.
These outliers break the continuity of the final output. With
the pitch tracking, the output gets more continuous, which
is shown in the red line. It indicates that the pitch tracking
can correct some errors from the pitch state estimation by the
CNN.

Then the systematic evaluation results are listed in Fig.
3. It can be clearly seen that the proposed method (the red
line in Fig. 3) almost always obtains the highest accuracy rate
and lowest voicing decision error. From the left to right, the
test condition is less similar to the training condition, where
more and more unmatched factors are added. We see that the
advantage of the proposed method becomes more obvious. It
indicates that the proposed method has a good generalization
ability.

5. CONCLUSION

In this study, we employ CNN for robust pitch determination.
With shift-invariant characteristics, the CNN models the
harmonic structure well. Experimental results show that the
proposed method produces promising results and generalizes
well to new speakers and noisy conditions.
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