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ABSTRACT 

 

The emotion of a music piece varies as it unrolls in time. We 

develop a system that takes a melody and an expected 

emotion flow as input and automatically generates an 

accompaniment. The accompaniment is composed of chord 

progression and accompaniment pattern. The former is 

generated from melody and valence data through dynamic 

programming, and the latter from arousal data. A 

mathematical model is developed to describe the relation 

between valence and chord progression. The performance of 

the system is evaluated subjectively. The cross-correlation 

coefficient between the expected arousals and the perceived 

ones is 0.84, and the cross-correlation coefficient between 

the expected valences and the perceived ones is 0.52. Both 

coefficients exceed 0.90 for musician subjects. 

 

Index Terms—Accompaniment, emotion flow, music 

emotion, melody harmonization 

 

1. INTRODUCTION 

 

Music plays an important role in human history; there is no 

known culture that lacks music [1]. Most music pieces 

consist of melody and accompaniment [2]. However, 

different accompaniments for a melody can evoke quite 

different emotional responses from listeners [3]. Since the 

affection evoked by music in a listener builds up and falls 

repeatedly as the music unrolls in time, we aim to develop 

an automatic accompaniment generation system that is able 

to create such dynamic music emotion perception. 

The input to our system includes a melody and a pair of 

valence and arousal curves specified as a function of time by 

the user. Music emotion is effected through the manipulation 

of music features. Mode and chord features are related to 

valence perception [4]–[6], therefore, we embed them in 

chord progression and use chord progression to control 

valence. In contrast, we control arousal by manipulating 

rhythm, volume, and pitch range [5], [6] through the 

accompaniment pattern. 

The contributions of the paper are as follows: 

 The proposed system automatically generates an affective 

accompaniment that conforms to the valence and arousal 

sequences and the melody input by the user (Section 4). 

 We develop a model to describe the relation between 

valence and chord progression. The optimization problem 

of valence-based chord progression generation is solved by 

dynamic programming (Section 5). 

 

2. RELATED WORK 

 

Several automatic accompaniment generation systems have 

been developed in the last few years. The accompaniment 

systems described in [7], [8] harmonize the melody by a 

hidden Markov model that represents the melody as an 

observation sequence and the chord as a hidden state. 

Similarly, in [9], a Markov chain with neo-Riemannian 

transformations is used to construct chord progression. 

However, these systems do not incorporate affection into 

accompaniment. 

There is limited research on the generation of affective 

accompaniments for melodies. In MySong [10], [11], 

different chord transition matrices are used to generate the 

accompaniment according to the “happy factor” provided by 

the user. The system described in [12] generates the 

affective accompaniment based on the concept that the same 

chord followed by different chords evokes different 

emotions. These systems only generate accompaniments 

with one single emotion, not a flow of emotions. 

Affective music synthesis is a relevant research topic. 

Most affective music synthesis systems [4], [5] generate the 

melody after the chord progression is determined. Therefore, 

the music is much easier to harmonize. Our system works in 

a reverse fashion. It generates the chord progression for a 

given a melody. Since the melody serves as a constraint, the 

generation of chord progression becomes an optimization 

problem, for which both melody and emotion have to be 

considered. 

 

3. EMOTION AND MUSIC FEATURES 

 

In this section, we first describe the emotion model adopted 

in this work and the two important dimensions, valence and 

arousal. Then we describe the music features relevant to 

emotion perception. 

 

3.1. Emotion model 
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Various emotion models have been proposed in the past 

decades. A typical model is the one that classifies emotion 

into distinct categories. However, the number of categories 

is too small in comparison with the full spectrum of human 

emotion [13]. Therefore, an alternative approach that 

represents emotion by continuous values in a multi-

dimensional space has been considered. 

In music emotion, Thayer’s model [14] is most 

commonly adopted. It has two attribute axes: valence (how 

positive/negative) and arousal (how exciting/calming). With 

this model, our system generates an accompaniment 

according to the valence and arousal curves specified by the 

user. 

 

3.2. Music features relevant to valence and arousal 

 

A general consensus is that mode, chord, and melodic 

direction are music features that are relevant to the valence 

perception, while tempo, rhythm, volume, and pitch range 

are relevant to the arousal perception [4]–[6]. 

However, not all of such music features are applicable 

to our system. For example, the tempo and the melodic 

direction are already decided by the melody and cannot be 

altered. Therefore, we use the other features to generate 

affective accompaniments. Since the mode and chord 

features are embedded in chord progression, we may simply 

focus on how to express valence with chord progression. 

The model we develop to relate valence to chord 

progression is described in Section 5.4. 

In our system, arousal is expressed by manipulating 

rhythm, volume, and pitch range. These music features are 

controlled through the accompaniment pattern. Different 

chords played with the same accompaniment pattern sound 

similar in rhythmic structure. The design of accompaniment 

patterns is described in Section 6. 

 

4. SYSTEM OVERVIEW 

 

Fig. 1 shows the block diagram of the proposed system. The 

input to the system is a melody, a valence curve, and an 

arousal curve. 

First, the system uses MIDI toolboxes [15], [16] to read 

the MIDI file of the melody and analyze the melodic 

features. Then, it transposes the melody into C major (A 

minor) if the key is in major (minor). In our system, relative 

major and minor keys are jointly considered, so only the 

chords frequently used in both C major and A minor, namely, 

C, Dm, Em, F, G, and Am [17], are concerned. 

Second, for each bar of the melody, the system finds an 

appropriate chord from the chord database to meet the 

following three requirements: 1) The transition of chords has 

to be smooth and natural, 2) Each chord should harmonize 

with the corresponding bar of the melody, and 3) The chord 

progression should conform to the given valence curve. The 

three requirements are considered in Section 5. 

The system generates the accompaniment pattern 

according to the given arousal curve. For each bar of the 

melody, the system selects a pattern from the pattern 

database (Section 6) and assigns it to the chord progression 

for accompaniment generation. Finally, the accompaniment 

is transposed to the original key and combined with the 

melody to form a MIDI file. 

 

5. GENERATING CHORD PROGRESSION 

 

The generation of chord progression is formulated as an 

optimization problem using three cost functions. For 

practical purposes, a suboptimal solution is developed to 

trade optimality for computational efficiency. 

 

5.1 Optimization formulation 

 

The formulation of chord progression generation problem is 

illustrated in Fig. 2, where mi denotes the ith bar of the 

melody, ci the corresponding ith chord, and vi the 

corresponding ith sample of the input valence curve. Also let 

m, c, and v denote their vector forms, each of size n. Each 

requirement described in Section 4 is expressed as a cost 

function. Denote the three cost functions by f1, f2, and f3. 

Then the chord progression generation is formulated as 

1 1 2 2 3 3arg min ( ) ( , ) ( , )f f f    *

c

c c m c v c       (1) 

where c
*
 denotes the optimal chord progression and λ1, λ2, 

and λ3 are positive constants. 

 

5.2 Cost function f1(c) 

 
Fig. 1. System block diagram. 

 
Fig. 2. Given a valence value vi and its corresponding melody 

bar mi, the problem of chord progression generation is to 

determine an appropriate chord ci that, together with ci–1, ci–2, …, 

and ci–N, where N is an integer (2 in this figure), would evoke vi 

from the listener.  
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In Western music, some chords are more likely to follow 

other chords [17]. Such chord transitions make the music 

sound smooth and natural. Therefore, the first cost function 

is defined by 

1 2 2 1

1

( ) log ( ) log ( | )
n

i i

i

f p p c c 



   c c           (2) 

where p(·) denotes probability and n, as defined before, 

denotes the number of melody bars. The approximation 

assumes the transition of chords is a first-order Markov 

process [7], [8]. In our system, we calculate the transition 

matrix based on the Theorytab database [18], which contains 

approximately 6,000 songs with various genres. The cost is 

inversely proportional to the probability. 

 

5.3 Cost function f2(m, c) 

 

If a melody bar predominantly contains the pitches that 

make up a chord, then the chord harmonizes well with the 

bar. We define the second cost function as follows: 

2 2 2

1 1

( , ) ( , ) log [ ( ) ( )]
n n

i i i i

i i

f f m c m c
 

    m c P T       (3) 

where P(·) denotes the pitch class profile of a melody bar 

and T(·) denotes the template of a chord. The former 

represents the proportion of the 12 pitches in the chromatic 

scale [19], whereas the latter represents the binary 

information of the pitches in a chord [20]. For example, in 

Fig. 2, we have P(m1) = [ 1/4, 0, 0, 0, 1/2, 0, 0, 0, 0, 1/4, 0, 

0 ]. If the first chord is an A minor chord, we have T(c1 = 

Am) = [ 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 ] since it consists of 

three notes, A, C, and E. The inner product of the two 

vectors is 1, which means the chord is perfectly harmonized 

with the melody. 

 

5.4 Cost function f3(v, c) 

 

We develop a model to relate chord progression to valence 

based on the observation that the same chord followed by 

different chords evokes different emotions [12]. Let Δvc,i 

denote the valence value of two successive chords (ci–1, ci), 

and Δvc its vector form. We determine Δvc,i by  

, 1

1,
( , )

1,

i

c i i i

i

if c is a major chord
v g c c

if c is a minor chord



   


      (4) 

where g(·) denotes a function. In general, the function can be 

subjectively determined by a ranking-based method [12]. 

We take a simplified approach based on empirical data. 

Besides, we assume that the latest N+1 chords, or the 

corresponding N chord pairs, determine the perception of the 

current valence value (Fig. 2) and that a more recent chord 

has a higher impact on the current valence. Thus, we have 

  c cv v w ,                                (5) 

where  2

( 1)
, 1, ..., 2,1

N N
N N


 w  is a filter. We pick N = 

7 for the system. 

Then we calculate the square error between v and vc as 

the third cost function,  

2 2

3 ,

1

( , ) ( ) .
n

i c i

i

f v v


   cv c v v               (6) 

5.5 Dynamic programming 

 

If we ignore the emotion part by setting λ3 = 0, (1) becomes 

an ordinary harmonization problem, which can be easily 

solved by dynamic programming. This case can be realized 

by erasing the lines between v and c in Fig. 2. The dynamic 

programming process starts from the first chord, stores the 

least cost of all possible current ending chords, and moves 

on to the next chord. It has been extensively used for melody 

harmonization, for which the melody is considered an 

observation sequence and the chord a hidden state in a 

hidden Markov model [7], [8], [10]. 

In general, (1) is more complex than the melody 

harmonization problem. It is practically infeasible to find the 

optimal chord progression by the same method since all 6
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(approximately 280,000) results for the last seven chords 

have to be stored in each iteration. The complexity becomes 

greater if a larger chord database is used. 

To solve the problem, we only store the results for the 

last two chords. Since the weights of these chords are much 

larger, this suboptimal solution leads to reasonably good 

results. 

 

6. GENERATING ACCOMPANIMENT PATTERN 

 

The accompaniment pattern is generated from the given 

arousal curve based on three music features: rhythm, volume, 

and pitch range. Fig. 3 shows the eight accompaniment 

patterns generated by the system. The note density increases 

rapidly in the first four patterns, whereas strong bass notes 

appear in the last four patterns due to contrast enhancement. 

We can see that the arousal increases from left to right and 

from top to bottom. 

Let ai denote the ith sample of the input arousal curve. 

In our system, we quantize ai using a uniform eight-level 

quantizer and choose the accompaniment pattern for the 

corresponding bar mi. 

 

 
Fig. 3. Accompaniment patterns shown with C major chords. 
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7. SYSTEM EVALUATION 

 

A subjective test is set up to evaluate the performance of our 

system. The details are described in this section. 

 

7.1 Setup 

 

A total of 12 subjects are recruited, four musicians (one 

female and three males, mean age 23.0) and eight non-

musicians (four females and four males, mean age 22.6). 

Three melodies are used in the subjective test. To reduce 

burden, each melody is shorter than 60 seconds. 

In the test, each subject specifies the expected emotion 

flow by drawing a pair of valence and arousal curves for 

each melody. This step is repeated twice, and the results are 

averaged. Each curve is drawn as a function of time and 

within the range [–1, 1]. Altogether, the system generates six 

accompaniments. Then, as the system plays back the 

accompanied melody, the subject is asked to annotate its 

perceived emotion as a function of time and within [–1, 1]. 

Repeatedly listening is allowed. 

Two restrictions are imposed on the user-specified 

emotion curves. First, no more than four peaks and valleys 

(excluding the two endpoints) are allowed for each curve. 

This is reasonable, considering the duration of each melody. 

Second, each curve should have a certain extent of variation, 

because the cross-correlation, which is used to measure the 

similarity between two emotion curves, becomes unstable if 

the curves are flat. The variation requirement can be 

expressed as 

 
2

0

1
( ) 0.1

T

v t v dt
T

   and  
2

0

1
( ) 0.1

T

a t a dt
T

   (7) 

where v and a denote the means of the specified curves v(t) 

and a(t), and T is the duration of the melody. A system 

warning is given if the requirement is not met. In this case, 

the subject has to redraw the emotion curve. 

 

7.2 Evaluation method 

 

In practice, we cannot expect the subject to generate exactly 

the same emotion curve for the same music when listening to 

it the second time. Therefore, the Pearson correlation, which 

is invariant to separate changes in location and scale 

between two curves, is a more appropriate similarity metric 

than the mean square error for this work. In addition, we 

allow a two-second lag in calculating the cross-correlation to 

account for the lag in response [21], [22]. 

 

7.3 Evaluation results 

 

Fig. 4 shows the results of the subjective test, one score per 

subject per accompanied melody. Totally, there are 72 

scores in the score chart. The horizontal axis represents the 

cross-correlation coefficient CV between a user-specified 

valence curve and its corresponding perceived valence curve. 

The vertical axis CA is defined in the same way for arousal. 

We can see a number of scores with negative CV’s in the 

score chart. This is consistent with the fact that valence 

perception is more subjective than arousal perception [23].  

Nevertheless, about two thirds of the scores have CV > 0.60, 

and all except five scores have CA > 0.60, indicating that the 

system is capable of generating reasonably good 

accompaniments for the users. 

The results for musicians are remarkable. There are 21 

out of 24 scores with CV > 0.80 and CA > 0.80, and the 

means of both CV and CA exceed 0.90. This means our 

valence-based chord progression model works effectively 

well for musicians. The superior scores obtained for 

musicians can be attributed to the music training they have 

received. In general, musicians are more sensitive to subtle 

changes in music [24]. More statistics are shown in Tables 1 

and 2. 

 

8. CONCLUSION 

 

In this paper, we have described an automatic system that 

generates an affective accompaniment according to the 

emotion flow specified by the user. The development of the 

system is based on a valence model for chord progression 

and a set of accompaniment patterns to express arousal. We 

have performed a subjective test to evaluate the system, and 

the results show that the accompaniments generated by the 

system do express the emotions specified by the users. 

 
Fig. 4. Distribution of the cross-correlation coefficients for 

musicians (green circles) and non-musicians (black asterisks). 

Table 1. Statistics of cross-correlation 

coefficients between arousal curves 

CA All Musicians 

Mean 0.8373 0.9181 

Std. dev. 0.1837 0.0675 

 

Table 2. Statistics of cross-correlation 

coefficients between valence curves 

CV All Musicians 

Mean 0.5199 0.9017 

Std. dev. 0.5224 0.0951 
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