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ABSTRACT

This paper presents an HMM-based automatic system for recog-
nition of bird species from audio field recordings. It includes an im-
proved unsupervised modelling of individual bird syllables and dura-
tion modelling. The acoustic signal is decomposed into isolated seg-
ments, each segment containing a temporal evolution of a detected
sinusodal component. Modelling of bird syllables is performed us-
ing Hidden Markov models (HMMs). A set of syllables of bird vo-
calisations is discovered in an unsupervised manner by employing
dynamic time warping and agglomerative hierarchical clustering. A
novel iterative maximum likelihood procedure is used to train indi-
vidual HMMs for syllables of each species. Modelling of the state
duration is employed in a post-recognition stage by combining the
likelihood of the acoustic and duration modelling. Experiments are
performed on over 33 hours of field recordings, containing 30 bird
species. Evaluations demonstrate that the use of the proposed un-
supervised iterative HMM training procedure and the duration mod-
elling provides in average 45% error rate reduction. The presented
system recognises bird species with accuracy of 97.8% using 3 sec-
onds of the detected signal.

Index Terms— bird species recognition, hidden Markov model,
HMM, syllable, unsupervised, duration modelling, DTW, segmenta-
tion, frequency track, sinusoid detection, audio, field recordings

1. INTRODUCTION

Bird vocalisations can be considered to be composed of stereotyped
acoustic units, which we refer here to as syllables. Each syllable has
a distinct time-frequency structure.

The first step in automatic processing of bird vocalisations is
usually to segment the audio signal into isolated segments. There
have been two main approaches to automatic segmentation. One is
based on using an energy-based threshold decision, applied to time-
domain signal or time-frequency representation of the acoustic sig-
nal, which is followed by some filtering, e.g., [1, 2] The other ap-
proach aims at decomposing the acoustic scene into sinusoidal com-
ponents [1, 3, 4, 5, 6, 7]. The works in [1, 3, 4] used the sinusoidal
decomposition method presented in [8]. In our recent bird pattern
procesing studies [5, 6, 7] as well as in this paper, we employed a
probabilistic method, presented in [9], for the detection of sinusoids.

A variety of feature representations and modelling approaches
of bird acoustic signals have been explored. Some studies employed
Mel-frequency cepstral coefficients (MFCCs), e.g., [10, 11, 1, 12].
As MFCCs normally capture the entire frequency band, they are
prone to background noise and presence of other birds/animals
concurrently vocalising in other frequency regions. The use of
various statistical descriptors to characterise the detected time-
frequency segments was employed in [1, 3, 4, 2]. Although the

use of a single feature vector may seem attractive, it may not be
inadequate to capture well the time-frequency structure of sylla-
bles as well as it may be susceptible to even minor inaccuracies
in segmentation. In studies based on the sinusoidal decomposition
approach, including our recent works, [1, 13, 5, 6, 7, 14], seg-
ments are represented as a temporal sequence of frequency values.
This representation, which we refer to as frequency track, has a
good potential, especially, in processing field recordings which typ-
ically contain various background noise and other birds/animals
vocalising concurrently. The frequency track features were shown
to obtain considerable performance improvements over MFCCs
in recognition of bird sounds in noisy conditions [5]. The most
commonly used modelling/classifier approaches include dynamic
time warping (DTW) [15, 10], Gaussian mixture modelling [1, 5],
hidden Markov models (HMMs) [1, 13, 16, 7, 17], support vec-
tor machines [18, 19], and decision trees [20]. The use of HMMs
is compelling as they allow to model the temporal evolution of
vocalisations.

In this paper, we extend our studies of automatic recognition
of bird species by introducing an improved unsupervised modelling
of individual bird syllable HMMs and incorporating duration mod-
elling. The audio signal is first segmented in time-frequency plain
into isolated sinusoidal segments and each segment is represented
using frequency track features. The temporal evolution of these fea-
tures is modelled using hidden Markov models. We employ an un-
supervised procedure, based on DTW and agglomerative hierarchi-
cal clustering, to discover a set of bird vocalisation patterns. This
provides labels for initial training of individual syllable HMMs, as
presented in [17]. This paper introduces a novel iterative-label
maximum likelihood training procedure to improve the quality of
the trained individual syllable HMMs. We also introduce an incor-
poration of the state duration modelling, which is performed in a
post-recognition stage by combining the likelihood from the acous-
tic model and the duration model. Recognition is performed using
the Viterbi algorithm to calculate probability of each detected seg-
ment on each bird species model and aggregating the probabilities
from all segments within a given duration of the signal. Experi-
mental evaluations are performed on audio field recordings provided
by Borror Laboratory of Bioacoustics [21]. The proposed improved
acoustic modelling and incorporation of duration modelling in a syl-
lable HMM-based system achieved 97.8% bird species recognition
accuracy, which is over 48% error rate reduction in comparison to
the previous syllable-based system.

2. HMM-BASED BIRD SPECIES RECOGNITION SYSTEM

The proposed HMM-based bird species recognition system consists
of the following parts: i) decomposition of the acoustic scene into
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individual segments and extraction of frequency track features for
each segment; ii) unsupervised modelling of individual bird sylla-
bles; iii) incorporating duration modelling. These are described in
following subsections.

2.1. Segmentation and estimation of frequency tracks

Segmentation of the audio signal and estimation of frequency tracks
is performed based on decomposing the entire acoustic scene into
individual sinusoidal components. The detection of sinusoidal com-
ponents is tackled as a pattern recognition problem. It is performed
on a signal frame basis. Each peak in the magnitude spectrum of a
signal frame is considered as a potential sinusoidal component. As-
sessment whether the peak is a sinusoid or noise is performed based
on short-time local magnitude and phase spectral features. The prob-
ability of a peak belonging to sinusoid and noise is calculated based
on trained statistical models. More details of the sinusoidal detec-
tion method we employed are presented in [9]. Isolated segments
are obtained based on the temporal evolution of detected sinusoidal
components, with filtering applied to deal with accidental errors –
the procedure is the same as used in our recent papers [7, 17] where
further details of the procedure as well as the parameter setup are
available. An example of a spectrogram of an audio field record-
ing, containing concurrent bird vocalisations, and the final estimated
individual segments are depicted in Figure 1. It can be seen that
frequency tracks detected correspond well to bird vocalisations.
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Fig. 1. An example of a spectrogram (a) of audio field recording and
the corresponding estimated frequency tracks (b).

2.2. Acoustic modelling

We use the model introduced in [17] as the baseline model in this pa-
per – this presents considerable improvement over our previous re-
search presented in [7]. For each bird species, we obtain a set of hid-
den Markov models (HMMs). This consists of a number of models
for individual bird syllables plus one additional general model. To
obtain the individual syllable models is not straighforward as there
is no bird syllable label information available for our data (and is
unlikely to be available for large datasets in general) as well as the
set of syllable patterns produced by each bird species is not known.
We introduced an approach to deal with the problem of obtaining
the individual syllable HMMs in an unsupervised manner in [6, 17]
and this is summarised in Section 2.2.1. The novel parts introduced
in this paper consist of an improved iterative procedure for training
syllable HMMs and incorporation of duration modelling and these
are presented in Sections 2.2.2 and 2.3, respectively.

2.2.1. Unsupervised modelling of individual bird syllables

The first step towards obtaining individual syllable models in an un-
supervised manner is to find a set of bird vocalisation patterns. There
could be several ways to deal with this problem. The approach we
employed in this paper is based on a modified dynamic time warping
(DTW) algorithm to search for partial and multiple matches between
each pair of detected segments and then use the obtained similarity
values in an agglomerative hierarchical clustering [6].

The outcome of the above step is a set of clusters of vocalisation
patterns for each bird species. The resulting assignment of segments
into clusters provides the label information for each detected seg-
ment. Using this label information, we can use the Baum-Welsh
algorithm to train the individual syllable HMMs of each species. As
the obtained clusters of vocalisation patterns are expected to be ho-
mogenous, the state output probability density function (pdf) of each
individual syllable HMM consists only of a single Gaussian distri-
bution. In this paper, we use a fixed number of clusters, based on the
highest occupancy, for each bird species. As there will be segments
which are not assigned to any of the clusters, in addition to the in-
dividual syllable HMMs, we also have a single ‘general’ HMM for
each bird species to model all the remaining segments. To cover
the variety of these remaining segments, the state pdf of this model
consists of several Gaussian mixture components.

2.2.2. Improved modelling of individual bird syllables

The individual syllable models as described in Section 2.2.1 are
trained based on the label information obtained as a result of the
DTW search and hierarchical clustering. This may, however, con-
tain some errors – there may be some segments incorrectly assigned
to clusters or some segments which should be assigned to one of
the individual syllable clusters may be assigned by error to the gen-
eral model. To improve over this, we incorporate an iterative train-
ing procedure in which the label assignment is modified based on
the maximum likelihood criteria during the HMM training. After
training the HMMs with the initial label, for each segment of each
bird species we find the model (either individual or general) for that
species that achieves the maximum likelihood. This provides a new
label for that segment to be used in the next Baum-Welsh training
iteration. The iterative process can be repeated several times and the
stoping criteria may be based, for instance, on the likelihood change
between iterations.

Figure 2 shows examples of the state output pdf of several
trained individual syllable HMMs of one bird species. The top and
bottom row present models obtained using the initial label infor-
mation and after 2 iterations of the training procedure, respectively.
It can be seen that each model provides a distinctive pattern. The
models in the first and second column show modification of their
parameters as a result of the iterative training procedure, while the
model in the third colum is largely unchanged. The first model
mainly decreased its variance at the beginning states, while the
second model also modified its means. We have observed that
the models changed only little after 2 iterations of this training
procedure. Our analysis on the training data also showed that the
proportion of segments assigned to the general model was over 40%
after the DTW and clustering but decreased to below 7% after two
iterations of this training procedure.

2.3. Incorporating duration modelling

While the duration is a key aspect of bird vocalisation pattern struc-
ture, the underlying model of duration in standard HMMs is not well
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Fig. 2. Examples of the mean values, with variance around the mean
indicated using dashed-dotted lines, of the state output Gaussian pdf,
modelling frequency track features, for three trained syllable HMMs
of bird species Pine Warbler after using the initial label informa-
tion (top row) and after 2 iterations of the training procedure (bot-
tom row). The x- and y-axis denotes the HMM state and frequency
index, respectively.

suited. This section presents an approach we employed for mod-
elling the duration of each HMM state and incorporating this in a
post-recognition. A similar post-recognition approach, although for
different purpose, was also used in [22].

First, for each segment of the training data of each bird species,
using the Viterbi algorithm we find the model of that bird species
that achieves the highest likelihood. This will be either one of the
individual syllable models or the general model. The Viterbi algo-
rithm also provides the alignment of the sequence of frequency track
features of the segment on the states of that model, i.e., we obtain
the occupancy count for each state, which we denote by a vector
D = (d1, . . . , dS), where S is the number of states. Using the
whole training set, the state occupancy counts are collected for each
individual syllable model and general model of each bird species.
These are used to estimate a state-duration probability distribution
for each state of each model. A variety of distribution functions
could be employed, for instance, in the context of speech processing,
Gamma and Poisson distributions have usually been used, e.g., [23].
We have observed that the state occupancies may not follow well
a single Poisson distribution. As such, we used a mixture of Pois-
son distributions, with the parameters being estimated using the EM
algorithm.

The above considers the duration of each state separately. This
may not be robust against inaccuracy in the frame-state alignment.
This could be improved by considering the duration within several
adjacent states, i.e., the duration ds at state s will be the sum of the
durations within the range of states (s, s + δ). We call this multi-
state duration model. Both the single-state and multi-state duration
models were explored in our experiments.

An example of the estimated state-duration probability distribu-
tion is depicted in Figure 3.

2.4. Recognition of bird species

We consider the identification of bird species from a finite set of
species based on an utterance of test signal of a given length.

For a given utterance of audio recording, the segmentation
and frequency track feature extraction step, as described in Sec-
tion 2.1, provide a set of J detected segments O={Oj}Jj=1,

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Duration

State 3

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Duration

State 6

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Duration

State 9

Fig. 3. An example of the state duration model for state 3, 6, and
9 corresponding to the bird syllable model shown in column 1 in
Figure 2.

with each segment being represented by a sequence of features
Oj=(oj(1), . . . ,oj(Tj)), where Tj is the number of frames in the
segment j. Each detected segment is treated individually and we
consider that vocalisations of only a single bird species are present
in the given utterance. Using the proposed model with incorporated
duration modelling, the recognised bird species, denoted by b∗, is
obtained as

b∗ = argmax
b

J∏
j=1

p(Oj |λb)p(Dj |γb)α (1)

where the term p(Oj |λb) is the probability of the sequence of fre-
quency track features Oj and p(Dj |γb) is the duration model prob-
ability. The p(Oj |λb) is obtained for each bird species as the maxi-
mum probability over the general and all individual syllable models
of that species using the best state sequence s∗ found by the Viterbi
algorithm as

p(Oj |λb) = max
i

Tj∏
n=1

p(Oj(n)|λb(i),s∗) (2)

where i is an index going through the set of general and individual
syllable models.

The state sequence obtained for segment j from the Viterbi al-
gorithm on the best model of that bird species defines the duration
vector Dj . This is used to calculate the duration probability term
p(Dj |γb), where γb denotes the duration model. As the duration
probability is of a different scale to the acoustic feature probability,
we weight the contribution of the duration probability to the overall
probability in Eq. 1 using the parameter α. We used the same value
of the weighting factor for all segments and models and its value was
found based on recognition experiments on the training data.

3. EXPERIMENTAL EVALUATIONS

3.1. Data description

Experimental evaluations were performed using field recordings
from [21]. These are recordings of birds in real world natural habi-
tats, collected over several decades, mostly in the western United
States. The recordings are encoded as mono 16-bit wav files, with
sampling rate of 48 kHz. There are several files for each bird
species, and each file is typically few minutes long. As these are
field recordings, the audio contains also background environmental
noise, vocalisations of other birds/animals and human speech. For
each recording, there is a label indicating the single bird species
vocalising but there is no label information that would indicate the
start and end times of each bird vocalisation.
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From the available data, we chose randomly a set of 30 bird
species. In total, we used over 33 hours of audio recordings, with be-
tween 28 to 95 minutes per bird species. The total length of detected
and used frequency track segments was 2.2 hours. For experimental
evaluation, each recording is split into training and testing part in
proportion of two to one, respectively. The data used for testing was
further split into utterances, where each utterance consisted of signal
containing approximately a given length of detected segments.

3.2. Experimental setup

Each detected segment was characterised by a sequence of frequency
track features. These contained the frequency value of the detected
sinusoid at each frame time, obtained as presented in Section 2.1,
and its temporal derivatives, referred to as delta and acceleration fea-
tures, obtained as in [24] with the window set to 3 and 2, respectively.
This resulted in a sequence of 3 dimensional feature vectors. In all
experiments, a left-to-right HMMs with no skip allowed were used
and these were built using the HTK [24]. The number of HMM states
was set to 13, which reflects the minimum allowed length of the de-
tected segment. Based on our results presented in [17], the number
of individual syllable models was set to 70. The HMM state out-
put probability density functions are using Gaussian distribution(s)
with a diagonal covariance matrix. A single Gaussian is used for
individual syllable models while a Gaussian mixture model with 10
components is used for the general model.

3.3. Experimental results

We first analyse the effect of the iterative training procedure. Results
obtained using utterances of 1 second length with different number
of iterations are presented in Table 1. It can be seen that the iterative
training gives significant performance improvements over the base-
line model. A large improvement is achieved after the first iteration,
followed by a further though smaller improvement after the second
iteration. The improvement is due to the improved quality of the in-
dividual syllable HMMs as well as due to the reduced set of patterns
the general HMM can account for.

Table 1. Bird species recognition accuracy obtained by the HMM-
based system using individual syllable models without (baseline) and
with the iterative training procedure. Utterances of 1 second length
used.

Baseline Model with iterative-label
model training

Iter 1 Iter 2
Rec. Acc. (%) 89.8 92.5 93.1

Next we analyse the effect of incorporating the HMM state du-
ration modelling. Results, again using utterances of 1 second length,
obtained by the baseline model without and with the single- and
multi-state duration modelling are presented in Table 2. It can be
seen that the use of single-state duration modelling gives good im-
provement and it is further improved by using multi-state duration,
which achieved over 15% relative error rate reduction over the base-
line model. Experiments with the multi-state duration were per-
formed using the parameter δ set from 1 to 3 and the presented results
are obtained when δ is 2.

Finally, we present results when both of the proposed techniques
were employed. Evaluations were performed with different length

Table 2. Bird species recognition accuracy obtained by the HMM-
based system using individual syllable models without (baseline) and
with incorporated state duration modelling. Utterances of 1 second
length used.

Baseline Model with state duration
model modelling

Single–state Multi–state
Rec. Acc. (%) 89.8 90.8 91.2

of the detected signal and results are presented in Table 3. It can
be seen that the combination of the two techniques provides further
recognition accuracy improvement. The error rate reduction from
the baseline models is between 37% to 48%.

Table 3. Bird species recognition accuracy and error rate reduction
obtained by the baseline individual syllable HMM-based recognition
system and the system with incorporated iterative training procedure
and duration modelling when using different length of detected sig-
nal.

Utterance Rec. Acc. (%) Error Rate
length Baseline Model with Reduction
(sec) model iterative training & (%)

duration modelling
1 89.8 93.6 37.2
2 94.3 97.1 48.3
3 95.8 97.8 48.6

4. CONCLUSION

We presented in this paper an automatic system for recognition of
bird species from audio field recordings based on improved mod-
elling of individual syllables of species and incorporation of the du-
ration modelling. The proposed system employed a method for de-
tection of sinusoidal components to decompose the acoustic scene
into isolated time-frequency segments. Each segment was repre-
sented as a temporal sequence of the detected sinusoid frequency,
referred to as frequency track. The temporal evolution of frequency
track features was modelled by employing hidden Markov models
(HMMs). Unsupervised clustering was employed to discover the
set of bird syllable patterns and an individual HMM was obtained
for each syllable. A novel iterative procedure, based on the maxi-
mum likelihood principle, for training the syllable HMMs was in-
troduced. An HMM state duration modelling was incorporated in
a post-recognition approach. Experimental evaluations were per-
formed on field recordings provided by the Borror Laboratory of
Bioacoustics. Experimental results demonstrated that the proposed
HMM-based system achieved in average 45% error rate reduction in
recognising 30 bird species in comparison to our previous system.
Using 3 second of the detected signal, the recognition accuracy of
97.8% was obtained.
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[7] P. Jančovič, M. Köküer, and M. Russell, “Bird species recog-
nition from field recordings using HMM-based modelling of
frequency tracks,” IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), Florence, Italy, pp. 8307–8311,
May 2014.

[8] R.J. McAulay and T.F. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representation,” IEEE Trans. on Acous-
tic, Speech, and Signal Proc., vol. 34, pp. 744–754, Aug. 1986.
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