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ABSTRACT

Searching a large database to find a sequence that is most similar
to a query can be prohibitively expensive, particularly if individual
sequence comparisons involve complex operations such as warping.
To achieve scalability, “pruning” heuristics are typically employed
to minimize the portion of the database that must be searched with
more complex matching. We present an approximate pruning tech-
nique which involves embedding sequences in a Euclidean space.
Sequences are embedded using a convolutional network with a form
of attention that integrates over time, trained on matching and non-
matching pairs of sequences. By using fixed-length embeddings, our
pruning method effectively runs in constant time, making it many
orders of magnitude faster than full dynamic time warping-based
matching for large datasets. We demonstrate our approach on a
large-scale musical score-to-audio recording retrieval task.

Index Terms— Sequence Retrieval, Attention-Based Models,
Convolutional Networks, Dynamic Time Warping, Pruning

1. INTRODUCTION

Sequences1 are a natural way of representing data in a wide range
of fields, including multimedia, environmental sciences, natural lan-
guage processing, and biology. The proliferation of sensors and de-
creasing cost of storage in recent years has resulted in the creation of
very large databases of sequences. Given such a database, a funda-
mental task is to find the database entry which is the most similar to
a query. However, this task can be prohibitively expensive depend-
ing on both the method used to compare sequences and the size of
the database.

An effective way to compare sequences is the dynamic time
warping (DTW) distance, first proposed in the context of speech
utterances [1]. DTW first computes an optimal alignment of the
two sequences of feature vectors being compared, and then reports
their distance as the total distance between aligned feature vectors.
The alignment step makes DTW much more robust to timing and
rate differences than more common metrics such as Euclidean dis-
tance [2]. DTW also naturally extends to the setting where subse-
quence matching is allowed. Using dynamic programming, the op-
timal DTW alignment can be found in time quadratic in the length
of the sequences, but even with this optimization, naive application
of DTW to nearest-neighbor retrieval can be prohibitively expen-
sive. Other dynamic programming-based “edit distance” measures
are used when appropriate, and are similar in both their effective-
ness and expense.

This work was supported by NSF project IIS-1117015.
1In this work, we refer to “signals” with the more generic term “se-

quences”, but the two can be used interchangeably.

To mitigate this issue, a variety of “pruning methods” have been
proposed. The idea behind these techniques is to use heuristics
to limit the most expensive comparisons to a small portion of the
database. [2] gives a broad overview of different pruning methods,
and shows that their application makes exact retrieval feasible in ex-
tremely large databases (e.g. trillions of sequences). However, these
methods rely on various assumptions, including that the query se-
quence is a subsequence of its correct match and the length of the
alignment path is known a priori.

An alternative approach is to replace the DTW search with a
surrogate problem that is faster to solve. For example, [3] proposes
a technique which maps sequences to a fixed-length embedding to
avoid DTW calculation when matching the query to the database.
The embedding is constructed by pre-computing the DTW distance
between each sequence in the database and a small collection of
“reference” sequences that are chosen to optimize retrieval accuracy.
Then, to match a query sequence to the database, its DTW distance
is computed against the reference sequences, and the resulting vec-
tor of DTW distances is matched against the database of embeddings
using a standard Euclidean distance-based nearest-neighbor search.
The resulting algorithm is approximate, but provided state-of-the-art
results both in terms of accuracy and speed. This technique relies
on the same assumptions as the pruning methods described in [2].
In addition, it presents a trade-off between efficiency and accuracy,
since more reference sequences generally improve accuracy but re-
quire more full DTW calculations to be made, increasing the expense
for very long or very high-dimensional sequences.

In [4], a more general approximate method is proposed where a
neural network model is used to map and downsample sequences of
feature vectors to shorter sequences of bit vectors. Computing the
distance between bit vectors can be achieved by a single exclusive-
or operation followed by a table lookup, so this approach vastly
improves the efficiency of the local distance calculations involved
in DTW. Furthermore, downsampling the sequences gives quadratic
speed gains. In an experiment matching transcriptions of musical
pieces to audio recordings in a large database, using this method al-
lowed for 99% of the entries in the database to be pruned with high
confidence. However, the efficiency of this approach is still limited
by its reliance on DTW.

Motivated by the above issues, we propose a learning-based sys-
tem for producing sequence embeddings for approximate matching.
Our approach is similar in spirit to [3], except that it is fully gen-
eral, i.e. it does not rely on any assumptions about the alignment
length or whether the query is a subsequence of its match. This
is thanks to the fact that we utilize an attention-based neural net-
work model which can adapt to any problem setting according to
the training data provided. Our approach is also constant-time in the
query length: By mapping sequences to a fixed-length embedding,
comparing a query to each database entry is a single Euclidean dis-
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tance calculation, which does not become less efficient for longer or
higher-dimensional sequences.

In the next section we discuss embedding and attention-based
neural networks, which we use to motivate our proposed model in
Section 3. In Section 4, we evaluate the effectiveness of our pro-
posed model on the task of matching musical transcriptions to audio
recordings of their corresponding songs in a large database. Finally,
we discuss results and possibilities for improvement in Section 5.

2. EMBEDDING AND ATTENTION

The idea behind “embedding” is attractive: Given data in a represen-
tation which is either inefficient or does not readily reveal factors of
interest, can we produce a mapping to fixed-length vectors that pos-
sess these desired properties? Because many simple machine learn-
ing methods are particularly effective given data where Euclidean
distance corresponds to some notion of similarity, embedding can
make data more amenable to learning and comparison.

As a concrete example, in [5], a neural network architecture is
used to embed images of faces such that images of the same person
have small pairwise distances in the embedded space and images
of different people have large distances. The authors were able to
achieve state-of-the-art results on the “labeled faces the wild” dataset
by simply thresholding the resulting distances to denote “same per-
son” or “different person”. In addition, the embedded representation
produced qualitatively useful results when performing unsupervised
clustering using k-means. Another striking application of embed-
ding is word2vec, which is a family of models for mapping words
to a Euclidean space with desirable properties [6]. For example, the
difference between “China” and “Beijing” in the embedded space is
roughly equivalent to the difference between “Rome” and “Italy”.

The idea of embedding has also been applied to sequences. No-
tably, in [7], a recurrent network was trained to map a sequence of
words in a source language to a fixed-length vector, which was then
used to generate a sequence of words in a target language, result-
ing in a quality translation of the original sentence. The resulting
source-sentence embeddings encoded high-level linguistic charac-
teristics, such as invariance to word order in sentences with the same
meaning. A benefit of using recurrent networks is their ability to
summarize an entire sequence of arbitrary length as a fixed-length
vector, which brings the possibility of learning embeddings to se-
quences.

Recurrent networks, however, have difficulty in modeling long-
term dependencies [8]. In the embedding setting, this may result in
the end of the sequence having a greater impact on the embedding
than the beginning. A recent technique for mitigating this issue has
been dubbed “attention” [9]. Conceptually, an attention-based model
includes a mechanism which learns to assign a weight to each se-
quence step based on the current and previous feature vectors. When
used with recurrent networks, the addition of attention has proven
effective in a wide variety of domains including speech recognition,
machine translation, and image captioning [10].

Attention-based models may be compared to the common tech-
nique of summarizing a sequence of feature vectors by the mean,
variance, and occasionally covariance of feature dimensions. This
simple approach has seen frequent application in the domain of mu-
sic information retrieval, where it has proven to be surprisingly effec-
tive at genre classification [11], instrument classification [12], artist
recognition [13], and similarity rating prediction [14]. Attention-
based models can be seen as a generalization of this technique where
both the feature representation and the weighting used in construct-
ing the average are optimized and data-adaptive.

3. FEED-FORWARD ATTENTION

While previous work on attention-based models has focused on re-
current networks, in the present work we will use feed-forward net-
works for the following reasons: First, recurrent networks have diffi-
culty modeling very long-term dependencies [8]. In the experiment
described in Section 4, sequences may have thousands of time steps,
which is prohibitively long even for sophisticated models such as
long short-term memory networks [15]. Second, feed-forward net-
works are much more efficient to train and evaluate than recurrent
networks because their operations can be completely parallelized,
whereas recurrent networks must evaluate each time step sequen-
tially. Finally, attention provides its own form of temporal modeling
because it integrates over the entire sequence. We therefore propose
a “feed-forward” variant of attention, which computes a weighting
for each sequence step independent of all other steps.

Our simplified variant of attention can be formulated as follows:
Given a matrix which comprises a sequence of M D-dimensional
vectors X ∈ RM×D , we compute weights ω ∈ RM using the fol-
lowing transformation:

ω = softmax(σ(Xw + b)) (1)

where
softmax(x)j =

exj∑M
i=1 e

xi

and σ is some nonlinear function (throughout this work, we will use
σ = tanh). w ∈ RD and b ∈ R are parameters of the transforma-
tion, which can be learned as part of a larger feed-forward network
model. After computing ω, the weighted average of the vectors inX
is computed by

X̂ =

M∑
i=1

ωiXi,:

Conceptually, this attention mechanism can be thought of as using
w, b, and σ to compute scalar “importance” values for each vector in
X , which are then normalized using the softmax function and used
to compute a weighted mean X̂ over all vectors in X .

The main difference between this formulation and the one pro-
posed in [9, 10] is that here we are only producing a single weighting
ω rather than a different ω at each time step. This is primarily be-
cause our goal in embedding is to produce a single vector for the en-
tire sequence whereas previous applications of attention have mainly
focused on sequence-to-sequence transduction. As a result, Equation
1 does not contain any terms for a previous attention vector or a pre-
vious hidden state, because in the present contexts these quantities
do not exist. The main disadvantage to using attention in this way is
that it ignores temporal order by computing an average over the en-
tire sequence. However, motivated by the surprising effectiveness of
the unweighted/non-adaptive Gaussian integration results discussed
in Section 2, we submit that this approach will be effective and verify
its utility in the following section.

4. PRUNING EXPERIMENT

Recall that the goal of this work is to employ embeddings to speed
up large-scale sequence similarity searches by avoiding compar-
isons for most sequences in a database. Towards this end, we will
utilize embeddings as follows: First, given a training set of matching
sequences, we will train a feed-forward network with attention to
embed each sequence in a Euclidean space where similar sequences
have a small distance and dissimilar ones have a large distance.
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Fig. 1. Histograms of embedded distances for positive and negative
example pairs in the validation set for our best-performing embed-
ding network (c.f. [4] Figure 3). Note that the x-axis is log-scaled.

Then, we will utilize this network to pre-compute embeddings for
all sequences in a database. In order to match a query sequence,
we will compute the distance between its embedding and all pre-
computed embeddings from the database. Given a test set of correct
matches which are known a priori, the effectiveness of this approach
can be measured by determining how often the correct match ap-
pears in the N entries with the N smallest embedded distances for
varying values of N .

We will evaluate this approach on the problem proposed in [4].
This work seeks to efficiently match a transcription of a piece of
music to a recording of the same piece in a large database of record-
ings. The resulting problem boils down to a large-scale subsequence
matching problem, where the sequences are particularly long (up
to thousands of time steps), the feature dimensionality is relatively
high, and the correct match may be a subsequence of the query
and vice versa. These properties make the traditional DTW prun-
ing methods outlined in Section 1 ill-suited and provide a setting to
evaluate completely general-purpose methods like the one proposed
in this work. We will outline the details of the experiment below; for
a complete discussion, we refer the reader to [4].

The training set consists of a collection of MIDI files which have
been matched to audio files. MIDI files can be thought of as tran-
scriptions, and can be synthesized in order to obtain an audio record-
ing which is qualitatively similar to the song they are a transcription
of. In [4], the MIDI and audio pairs are also aligned in time to one
another using DTW before being used as training data; the system
proposed in this work doesn’t require sequences which are aligned
in time so we skipped this step. The resulting training set contains
5,536 sequence pairs.

As a representation, we use log-magnitude constant-Q spectro-
grams [16] of the audio files and MIDI syntheses. Each constant-Q
spectrum spanned four octaves, using twelve bins per octave start-
ing from MIDI note C3 (65.4 Hz). Each frequency bin in all fea-
ture sequences was z-scored (standardized) by its mean and standard
deviation over the training set. In [4], using shorter sequences was
beneficial so constant-Q spectra were aggregated over estimated beat
locations. The present approach is meant to be able to cope with
sequences which may be oversampled in time, so we did not beat-
aggregate feature vectors and instead used spectra computed every
46 milliseconds. All feature analysis and processing was accom-
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Fig. 2. Proportion of MIDI files in the test set whose correct match
appeared below a given rank, based on embedding distances.

plished with librosa [17, 18].
For a model, we follow [4] by using a siamese architecture con-

sisting of two parallel convolutional networks followed by two paral-
lel fully-connected networks. The use of a convolutional “front end”
allows our model to exploit both time and frequency invariances in
the constant-Q spectra while reducing the number of model param-
eters. The main difference in models is the addition of the attention
mechanism proposed in Section 3, which we place between the con-
volutional network and the fully-connected network. In this way, the
convolutional network can be seen as transforming a “raw” input se-
quence to a sequence of vectors in a learned representation, which
are then aggregated using the attention mechanism and mapped to
the embedded space using the fully-connected network. We used an
embedding space dimensionality of 128.

To train the networks, we pass pairs of “matching” and “non-
matching” sequences and utilize a loss function which encourages
matching pairs to have similar embeddings and non-matching pairs
to have dissimilar ones. We use the same loss function as in [4]:
Given a pair of positive sequences Xp, Yp and a pair of negative
sequences Xn, Yn, we attempt to minimize

L = ‖f(Xp)− g(Yp)‖22 − αmax(0,m− ‖f(Xn)− g(Yn)‖2)2

where f and g are the functions of the two networks being trained,
α is a parameter controlling the importance of separating dissimilar
pairs, and m is the target separation for dissimilar pairs. To con-
struct negative examples, we simply randomly choose non-matched
MIDI/audio sequence pairs from the training set.

As in [4] we utilize rectified linear units throughout the network,
except on the final output layer which used tanh units. All weights
were initialized using He et. al.’s method [19] and all biases were
initialized to zero. The networks were optimized with respect to L
using Nesterov’s accelerated gradient [20] with mini-batches of 20
similar and dissimilar pairs. All sequences were either randomly
cropped or padded to the median sequence length in each modality.
Every 100 minibatches, we computed the mean loss L on a held-
out validation set consisting of 10% of the training set; when it was
less than .99 times the previous lowest validation loss, we trained for
500 more minibatches. We implemented our model using lasagne
[21], which is built on theano [22, 23].

To choose hyperparameter settings, we used the Bayesian op-
timization software package spearmint [24]. We optimized the

556



C3

C4

C5

C6

0 300 600 900 1200 1500 1800 2100 2400
C3

C4

C5

C6

0 300

1 16 32 48 64 80 96 112 128

Frame Index

Fr
e
q
u
e
n
cy

Fig. 3. Embeddings for two pairs of matching sequences from our best-performing system. The first two rows display pairs of matching
constant-Q spectrograms. For both pairs, the right sequence is a subsequence of the left. The last two rows show their resulting embeddings.
Dashed arrows denote which embedding corresponds to which sequence.

number of convolutional and pooling layers, the number of fully-
connected layers, the learning rate and momentum, and the loss pa-
rameters α and m. We also experimented with using dropout [25] in
the fully-connected layers for regularization, but did not find it to be
beneficial. As an objective, we computed the Bhattacharrya coeffi-
cient [26] between the distributions of matching and non-matching
pairs in the validation set. The best-performing network configura-
tion achieved a Bhattacharrya coefficient of .471 and used a single
convolutional layer with 16 filters which were 5 time steps wide by
12 semitones tall, one 2x2 max-pooling layer, two fully connected
hidden layers with 2048 units each, a learning rate of 10−4, a mo-
mentum of 0.997, α = 0.935 and m = 1. The validation set dis-
tance distributions produced by this network after training can be
seen in Figure 1.

5. RESULTS

Some qualitative intuition about our system’s behavior can be gained
by inspecting the embeddings resulting from matching and non-
matching pairs of sequences. Embeddings for two different match-
ing sequence pairs from the validation set can be seen in Figure 3.
Among the four embeddings displayed, the pairs of matched em-
beddings resulted in Euclidean distances of 0.159 and 0.347, while
non-matching pairs had distances of 1.08 and 1.15. While these dis-
tances indicate the appropriate behavior, there are nevertheless some
noticeable discrepancies between the embeddings of the matched
sequences.

To evaluate our system’s performance on the task of pruning
large-scale subsequence search, we used it to match a held-out test
set of 1,282 MIDI files to entries in the Million Song Dataset (MSD)
[27]. Our test set was the same used in [4], for which the correct
match in the MSD is known for each MIDI file. We first computed
embeddings of constant-Q spectrograms for all of the short (30 to 60
second) preview recordings of each entry in the MSD provided by
7digital [28]. Then, we computed a constant-Q spectrogram and its
embedding for each MIDI file in the test set. To determine perfor-
mance, we computed the Euclidean distance between the embedding
of each MIDI file and the embeddings of every entry in the MSD and
determined how many entries had a distance that was smaller than

the correct match. As a baseline, we performed the same evaluation
except using the concatenated mean and standard deviation of the
feature dimensions of constant-Q spectrograms as the embedding.
The results can be seen in Figure 2.

To summarize these results, using the proposed method the
correct match appeared in the top 100,000 matches 91.3% of the
time using our learned embedding and only 74.4% of the time us-
ing the mean and standard deviation of spectrograms. As noted in
[4], matching a single MIDI file to the MSD using dynamic time
warping distance would take about three hours; the proposed ap-
proach takes about 360 milliseconds per file using a non-optimized
Python implementation. Another way of stating our result, then, is
that we can discard 90% (900,000 entries) of the MSD with 91.3%
confidence using a pruning method which is about 30,000 times
faster than the standard DTW-based matching approach. Compared
to the approach proposed in [4] which can prune 99% of the MSD
with 95.9% confidence, it is substantially less accurate, but it is also
over 300 times faster. In addition, our approach is fully general, and
was able to achieve good performance on a task that would not be
possible using the methods proposed in [2] or [3].

While our proposed approach has proven effective, there is room
for improvement. The model may be able to further differentiate be-
tween similar and dissimilar sequences if the dimensionality of the
embedded space was increased, at the cost of a linear increase in run-
time. Alternatively, choosing negative example pairs more carefully
(e.g. using the “harmonic embedding” approach of [5]) may further
improve discrimination. Finally, evaluating this approach on more
traditional sequence retrieval tasks which allow more stringent as-
sumptions to be made about the correct match would facilitate com-
parison to existing pruning techniques. For researchers interested in
utilizing and reproducing our results, code is available online.2
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