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ABSTRACT

Dynamic music emotion prediction is to recognize the con-
tinuous emotion contained in music, and has various applica-
tions. In recent years, dynamic music emotion recognition is
widely studied, while the inside structure of the emotion in
music remains unclear. We conduct a data observation based
on the database provided by Free Music Archive (FMA), and
find that emotion dynamic shows different properties under d-
ifferent scales. According to the data observation, we propose
a new method, Double-scale Support Vector Regression (DS-
SVR), to dynamically recognize the music emotion. The new
method decouples two scales of emotion dynamics apart, and
recognizes them separately. We apply the DS-SVR to Medi-
aEval 2015, Emotion in Music database, and achieve an out-
standing performance, significantly better than the baseline
provided by organizer.

Index Terms— Music, Emotion, Multi-scale, Double-
scale Support Vector Regression

1. INTRODUCTION

As an important art form, music arouses real emotion effects
in people. As such it has often been referred to as a language
of emotion [1]. Music Emotion Recognition (MER) can be of
help in understanding the content of the music, and has been
widely used in music indexing, recommendations and in other
application scenarios [2]. As an important part of MER, dy-
namic music emotion recognition has been widely investigat-
ed in recent years. In dynamic music emotion recognition, by
following a particular labeling rate, time-continuous emotion
labels can be marked, for the task of recognizing the emotion
sequence as based on the music data [3].

One straightforward method is to predict the emotion la-
bels based on short-term features [4]. The short-term fea-
tures are extracted from frames, and the frame moves with a
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shift equal to that of the labeling period. A shortcoming in
this method is that it lacks contextual information. In order
to make up for this shortcoming, function smoothing can be
added to the recognition result, which makes prediction result
smoother and more accurate.

In recent years, Long Short-Term Memory (LSTM) has
been applied also to the MER problem and has shown to have
a good performance [5]. LSTM is a recurrent neural network
(RNN) architecture published in 1997 [6]. Unlike the map-
ping of a single feature to a single label, LSTM maps the
feature sequence to a label sequence, which can be used to
more naturally combine local information and contextual in-
formation. However, LSTM does not take into account the
inner structure of the music data, and so MER is considered
as being only a sequence recognition problem.

Both the straightforward and LSTM methods detailed
above are used to directly map feature into emotion. How-
ever, some researches have introduced a middle-layer space
between the feature space and the emotion space. In 2014,
Naveen Kumar and Rahul Gupta proposed a new method,
which they proposed to predict dynamic labels from global
features through using Haar transform [7]. In the same year,
authors in [8] proposed a two-step method, by which the
researcher would construct a dispersed middle-layer repre-
sentation. These methods are attempts to make use of the
distribution information of the music; however, they do not
include consideration of the inner structure of music.

It has been proposed that music data takes a three-scale
structure, and so presents different properties under different
scales [9]. We propose that dynamic music emotion is affect-
ed by this multi-scale structure, and by making full use of
scale information, recognition algorithm can be simpler and
more effective.

In order to investigate the details of multi-scale structure
in music, a data observation process was conducted. From
the analysis, it was found that there were two principal s-
cales of emotion dynamics in music: global-scale dynamics,
which exists between different songs, and local-scale dynam-
ics, with a period from 1 s to 3 s. The two scales of emotion
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dynamics presented different physical and static characteris-
tics, and so should be treated separately.

Based on the analysis result, a new method is proposed to
recognize time-continuous emotion in music: Double-scale
Support Vector Regression (DS-SVR). The principle of the
DS-SVR is simple: it treats the global-scale dynamics as
the base platform, and the local-scale dynamics as the small
changes on the platform. By decoupling the two scales of
dynamics, recognizing them separately and then combining
them the recognizing result is obtained. This method can
make use of the global information within the music, while
not losing the details relating to the emotion dynamic. The
results were presented at MediaEval 2015 from using meth-
ods based on DS-SVR, and the results produced were well
received [10].

The rest of this paper is organized as follows. Section 2
shows the content and result of the data observation. Section
3 describes the DS-SVR algorithm used. The details of the
experiment are presented in Section 4, and the results of the
experiment are presented in Section 5. Conclusions are pre-
sented in Section 6.

2. DATA OBSERVATION

As was earlier proposed in [9], there exists three main dy-
namic scales in music. The lowest scale, wave scale, takes
wavelength as an element, covering the frequency range from
20Hz to 2kHz. The higher, phrase scale, corresponds to the
music phrase, with periods ranging from 1s to 5s. The highest
is movement scale, and song may contains one or more move-
ments, whereas the music style remains unchanged within the
movement [11]. The data observation approach follows the
assumption that since the music emotion is determined by the
music data, a similar multi-scale structure should exist with
respect to the music emotion sequence.

The database used for data observation was sourced from
the ”Emotion in Music” task in MediaEval [3]. The database
contained 1000 songs, which were selected from Free Music
Archive(FMA). For each song, 30s emotion annotations con-
taining Valence and Arousal values are provided with a 2Hz
sampling rate. Thus, there were 60 Valence values and 60
Arousal values in each song [12].

2.1. Multi-scale Structure of Emotion

The emotion changing curves of different songs is present-
ed in Figure 1. Five songs were chosen at random from the
database, and their Arousal curves can be seen in the fig-
ure. It can be seen that the emotion difference between songs
was significant, while the emotion curve of the same song re-
mained stable.

The variance of emotion labels inside the same song and
between songs was calculated by:
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(b) Valence

Fig. 1. Emotion sequence of song NO. 236, 684, 1044, 1173
and 1628

Vin = Ei(V arj(Li,j))

Vout = V ari(Ej(Li,j))

i = 1 . . . 1000, j = 1 . . . 60

(1)

where E(·) is the averaging function, V ar(·) is the vari-
ance function, and Li,j is the Valence or Arousal value of
the j-th label in the i-th songs. The result showed that
Vin = 0.0077, Vout = 0.1167 on Valence, and Vin =
0.0090, Vout = 0.1000 on Arousal. It can be seen that
Vout is 10 times greater than Vin.

Based on the analysis and calculation above, a two-scale
structure in music emotion dynamic could be generalized,
which corresponded to the three-scale structure in music data
[9]:

• Global-scale emotion dynamic, corresponding to
movement scale, represents the emotion variety be-
tween different songs, and determines the basic emo-
tion of a song;

• Local-scale emotion dynamic, corresponding to phrase
scale, represents the detailed emotion dynamic inside a
song, with period larger than 1s, shorter than 3s.

As presented in Figure 2, global-scale dynamic and local-
scale dynamic were coupled together. This can be considered
as being similar to electrical direct current and alternating cur-
rent: direct current determine the base current, and alternating
current provides the dynamic. The two sorts of current can be
coupled together to form the actual current, or handle sepa-
rately by decomposition.
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Fig. 2. Decoupling emotion dynamics of song NO. 236

2.2. Relationship Between Features and Emotion-Scales

The Person correlation coefficients were calculated with re-
spect to features used in INTERSPEECH 2013 ComParE
Challenge [13] and global-scale / local-scale emotion dynam-
ic. The most relevant features are listed in Table 1.

feature r
global local

mfcc[1]-maxPos 0.576 0.377
spectralHarmonicity-centroid 0.569 N/A

mfcc[1]-minPos 0.564 0.221
spectralRollOff90.0-risetime 0.554 0.155

peakRangeRel 0.551 0.016

spectralHarmonicity 0.228 0.526
lengthL1norm 0.162 0.430

lengthL1norm-dif 0.148 0.427
spectralEntropy 0.207 0.393

spectralFlux 0.233 0.386

Table 1. Top-5 features relevant to global-scale and local-
scale emotion. (r represents Pearson correlation coefficient)

Features which were relevant to global-scale dynamic in-
cluded MFCC, spectral RollOff and peakRange. These fea-
tures were related with music genre, or music style, which
corresponded to the movement scale. Features relevant to
local-scale dynamic were each short-term features. These fea-
tures were related to the local timbre in music, which corre-
sponded to the phrase scale in music data [9].

From the table 1, it can be seen that global-scale and local-
scale dynamic are related but with different features. Thus,
by using different features when recognizing global-scale and
local-scale dynamic this could promote the accuracy of pre-
diction.

3. ALGORITHM

From the above analysis, a new recognition method named
DS-SVR was proposed, which consists of two independent
SVRs on two different scales. SVR [14] has advantages for

high-dimensional regressions since the SVR optimization is
independent with the dimension of the input.

3.1. Notation

Let X = {x1, · · · ,xs}, Y = {y1, · · · ,yt} be two vector
sequences. Using the following notations: X is the average
value of X; {X} is a sequence consisting of s elements, all
elements equal to X; ⟨X,Y ⟩ by combining X and Y together;
when s = t, X ± Y = {x1 ± y1, · · · ,xs ± ys}.

St = {M t
1, · · · ,M t

m} and Se = {Me
1 , · · · ,Me

n} repre-
sent the training set and the evaluation set, respectively. Here
the m,n are the sizes of the two sets. M t

i is the i-th song in the
train set, and Me

j is the j-th song in the evaluation set. Cor-
respondingly, Lt = {Lt

1, · · · , Lt
m} and Le = {Le

1, · · · , Le
n}

were taken to represent the emotion annotations of training
set and evaluation set, respectively. Here Lt

i, L
e
j are each la-

bel sequences, where each label in the sequence contains an
Arousal value and a Valence value.

3.2. Double-scale SVR

For each song M t
i in St, a global feature vector xt

i was ex-
tracted with a local feature sequence Y t

i . As for Lt
i, the av-

erage label Lt
i was calculated and also the sequence Di =

Lt
i − {Lt

i}. Two models were trained with SVR:

mod1 : {xt
1, · · · ,xt

m} → {Lt
1, · · · , Lt

m}
mod2 : ⟨Y t

1 , · · · , Y t
m⟩ → ⟨D1, · · · , Dm⟩

(2)

For song Me
j in Se, the feature vector xe

j was extracted,
and also the feature sequence Y e

j . These features were input
into mod1 and mod2:

{xe
1, · · · ,xe

n}
mod1−−−→ {w1, · · · ,wn}

⟨Y e
1 , · · · , Y e

n ⟩
mod2−−−→ ⟨Z1, · · · , Zn⟩

(3)

Finally, the emotion label sequence of j-th music in the
evaluation set was calculated from wj and Zj :

Pj = Zj + {wj}, j = 1 . . . n (4)

Thus, {P1, · · · , Pn} is the prediction result.

3.3. Dealing with Variable-length of Song

The lengths of songs were not fixed in Se and St(In Section
4, but the lengths of songs were fixed in St). Thus, when
conducting DS-SVR on Se and St, there were three options:

op1 Extracting only one global feature for each song in Se

and St, and obtaining one global emotion value.
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op2 Dividing each song in St and Se into several segments,
each segment l seconds, with no overlap between seg-
ments.

op3 Dividing each song in St and Se into several segments,
each segment l seconds, with p% overlap.

4. EXPERIMENT

4.1. Feature

The feature was extracted by using openSMILE. The feature
set that was used in global-SVR was INTERSPEECH 2013
ComParE Challenge feature set (IS13-ComParE), and it con-
tained 6373 features [13].

The feature set used for local-SVR was a subset of IS13-
ComParE set, IS13-ComParE-LLD, with only the low-level
descriptors included. It contained 260 features [15].

4.2. Experiment Configuration

The data set was divided up as per MediaEval 2015. The
training set contained 431 clips, and each song had dynamic
annotations for 30 seconds. The evaluation set contained 58
complete songs, and the lengths of dynamic annotations were
not fixed, ranging from 49 seconds to 627 seconds [3].

The experiment reified each of the three options men-
tioned in Section 3.3, with l = 30, p = 50. The three ex-
periments for op1, op2 and op3 were named Expe1, Expe2
and Expe3 respectively.

4.3. Contrast Experiments

Three contrast experiments were chosen from MediaEval
2015, which were constructed around DRNN, LSTM-RNN
and SVR. The DRNN and LSTM-RNN have shown good
performance with respect to MER problem in recent years,
and SVR is the algorithm on which DS-SVR is based.

1. DRNN: Deep RNN (DRNN) was used to predict and
when performing back-propagation. For this project the
team used Limited Memory Broyden Fletcher Goldfarb
Shanno algorithm (LBFGS) to update the weights [16].

2. SVR: UNIZA system based on SVR with Radial Basis
kernel function was used [17].

3. LSTM-RNN: The model was by Long Short-Term
Memory Recurrent Neural Networks (LSTM-RNN)
for dynamic Arousal and Valence regression [18].

5. RESULT AND DISCUSSION

Table 2 presented the experimental results of DS-SVR and
the contrasting methods. From these results it can be seen
that DS-SVR performs best for Valence, and second-best for

Fig. 3. MAE of Expe1, Expe2 and Expe3

Arousal. The three experiments had similar performance in
terms of RMSE, whereas Expe3 performed best in terms of
Pearson correlation coefficient.

Method Valence Arousal
RMSE r RMSE r

Expe1 (op1) 0.303 0.01 0.250 0.56
Expe2 (op2) 0.310 0.01 0.245 0.58
Expe3 (op3) 0.307 0.03 0.248 0.60

Baseline [3] 0.366 0.010 0.270 0.360
DRNN [16] 0.336 -0.01 0.342 0.26
SVR [17] 0.366 -0.02 0.255 0.51

LSTM-RNN [18] 0.366 0.02 0.234 0.61

Table 2. Experiment results. (r represents Pearson corre-
lation coefficient and RMSE represents Root Mean Squared
Error. Baseline was provided by organizers.)

The mean average error (MAE) of the three experiments
were also calculated. Figure 3 shows the composition of
MAE; it can be seen that the error mainly arises in global-
scale. When the global-scale error was large, the effect of the
local-scale prediction results in large error. Thus, there is a
need to accurately recognize the global-scale emotion as the
basis for the dynamic music emotion recognition. DS-SVR
considers the global-scale emotion independently, which can
promote the global-scale recognition effect.

6. CONCLUSION

In this paper, in order to recognize dynamic emotion in music,
a data observation was conducted and a DS-SVR method was
proposed. This method benefited from the multi-scale struc-
ture in music, and showed a notably better performance when
compared with the other methods considered.

As mentioned above in Section 2, there may be one or
more music movements in a song. As a future work, we pro-
pose to extend the DS-SVR method to adaptively learn the
boundaries of movements and adopt a dynamic model (like
RNN, LSTM) for the local emotion, which may then help the
method performs better in relation to longer musical pieces.
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