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ABSTRACT

In this paper we present a novel Hierarchical Bayesian approach to
estimate Relative Impulse Response (ReIR) using short, noisy and
reverberant microphone recordings. The information contained in
ReIRs between two microphones is useful for a wide range of mul-
tichannel speech processing applications such as speaker localiza-
tion, speech enhancement, etc. It has been shown in several previous
works that the Relative Transfer Function (RTF) corresponding to a
given ReIR is dynamic and depends on the environment, microphone
positions and target position. This acts as the main motivation of this
work, as we develop a structured sparse Bayesian learning algorithm
to estimate ReIR using very short recordings, which will be robust to
changes in the environment. An extensive experimental study with
real-world recordings has also been conducted to show the efficacy
of our proposed approach over other competing approaches.

Index Terms— Relative Transfer Function, Relative Impulse
Response, Sparse Bayesian Learning, Reverberation.

1. INTRODUCTION

Relative Impulse Responses (ReIR) or their frequency-domain coun-
terparts, the Relative Transfer Functions (RTF) [1] are important
tools in several multichannel audio processing tasks such as speaker
extraction, noise reduction, speech enhancement, source localization
etc [2, 3]. For instance, RTF information can be naturally incor-
porated in beamforming algorithms, where the RTF is used to de-
sign the blocking matrix of an adaptive Generalized Sidelobe Can-
celer (GSC) [2, 4] to cancel the target signal and produce a noise
reference signal. This noise reference signal is then used later for
adaptive interference cancellation and post filtering to improve the
speech enhancement performance. In this paper we will focus on
a two-microphone setup, i.e, two channel recordings; in particular,
we consider a hearing aid application where the microphones are lo-
cated on left and right devices worn on a head. In other words, we
aim to estimate the ReIR between these two microphones.

As discussed above, in realistic acoustic environment, reverber-
ation has to be taken in to account in GSC to achieve satisfactory
signal cancellation in the output of the blocking matrix. Following
this idea, Gannot et al proposed a variant of GSC named as Trans-
fer Function-GSC (TF-GSC) [1] that relies on estimated RTFs. The
performance of TF-GSC depends strongly on the quality of the RTF
estimate, which is dynamic and changes with the movements of tar-
get, head movements of the hearing aid user (i.e, movement of mi-
crophones) etc. If the RTF estimate is not updated fast enough, or
if it is inaccurate, the target signal leaks through the blocking ma-
trix and is canceled by the adaptive filtering stage, which can cause

severe signal distortion at the output of GSC. This motivates us to
consider a dynamic environment where the RTF is estimated every
t = 100 − 200 ms using only recordings of duration t, which will
enable us to capture any changes in the environment.

ReIRs can be easily computed in a noiseless environment using a
traditional Least Squares (LS) method as shown in [4], but the LS es-
timate becomes unstable in presence of noise (this will be discussed
below in more details). There have been many recent attempts to es-
timate RTFs accurately in a noisy environment [5, 6, 7, 8], but most
of these solutions require a sufficiently long recording for a good es-
timate of RTF (i.e., significantly more than 100−200 ms). In [1] the
authors have proposed a method that exploits the non-stationarity of
the target speech signal. This method assumes that the noise and the
RTF are stationary, or at least much less dynamic, when compared
to the target signal. However, this assumption does not hold when
there is a speech interferer or if the RTF is highly non stationary. In
[9] the authors propose a novel assumption that the ReIRs can be re-
placed by sparse filters, which regularizes the LS solution. However,
in reverberant environments ReIRs will also exhibit a non-sparse de-
caying tail [8], which makes this approach detrimental in highly re-
verberant conditions. Moreover, they do not consider noisy cases. In
[8] a novel approach of sparsely reconstructing time domain ReIRs
from incomplete RTF measurements is proposed, where the estima-
tion occurs only using high Signal-to-Noise Ratio (SNR) frequency
bins.

Since we are considering a dynamic environment RTF estima-
tion, existing frequency domain approaches (described in more de-
tails in next section) give a biased estimate because of the inaccuracy
of the power spectral density estimate which must be approximated
by a finite average [10]. This is the main motivation of focusing on
a time domain solution. However, conversely a traditional time do-
main LS approach produces ineffective and unstable estimates due to
the presence of noise and finite amount of samples in the deconvolu-
tion problem [11]. To circumvent this, we propose a regularized LS
approach where the regularization has been incorporated by exploit-
ing a model for the prior structure of a ReIR. Specifically, unified
treatment of sparse early reflection and exponentially decaying re-
verberation tail in a prior distribution using a hierarchical Bayesian
framework is the main novelty of our work.

The rest of the paper is organized as follows: In Section 2 we
introduce the problem and Section 3 presents the popular existing
solutions to that problem which will be used as our baseline. We
present our proposed solution along with the inference procedure in
Section 4. Extensive experimental results over real world recordings
are presented in Section 5 and finally Section 6 concludes the paper
and discusses some future directions of this work.
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2. PROBLEM FORMULATION

Consider a two channel noisy recording of a target in a diffuse noise
environment, whose position is fixed for a certain time interval. This
situation can be represented as:

xL[n] = (hL ? s)[n] + εL[n] (1)

xR[n] = (hR ? s)[n] + εR[n] ≈ (hrel ? xL)[n] + εR[n] (2)

Where hL and hR denote the impulse response between the target
and the two microphones, s[n] denotes the target speech, εL[n] and
εR[n] denote the noise components. The main problem is to estimate
hrel, which denotes the ReIR between the left and right microphone.
The oracle solution of this problem in the time domain is, hrel =
hR ? h

−1
L . To ensure that the solution is causal, a fixed delay of a

few milliseconds can be introduced [12, 13], i.e., hrel = hR ?h
−1
L ?

δ(n− d) where d is the delay in samples. The oracle RTF, denoted
as HRTF which is a Fourier Transform of hrel can also be written
as, HRTF (θ) = HR(θ)

HL(θ)
.

3. EXISTING SOLUTIONS

In this section we recapitulate some existing approaches to solve the
problem presented above, which will be included in our experimen-
tal results section for comparison as baseline.

3.1. Traditional Least Square Solution
In a noise-free condition the size-L ReIR vector h can be estimated
using a Least Square approach, i.e:

ĥLS = arg min
h
‖xR −XLh‖22 (3)

where XL is the convolution matrix of size N × L which has been
constructed using xL[n]. The solution of Equation (3) can be easily
found by taking the pseudo-inverse:

ĥLS = (XL
TXL)−1XL

TxR (4)

Unfortunately, in the presence of noise the LS solution becomes un-
stable, which gives rise to a fluctuating ReIR estimate.

A workaround to the ill-conditioning problem above is to use
diagonal loading to make the matrix XL

TXL well conditioned. The
solution then becomes:

ĥRLS = (XL
TXL + αI)−1XL

TxR (5)

We can show that ĥRLS is actually the solution of the following
optimization problem:

ĥRLS = arg min
h
‖xR −XLh‖22 + α‖h‖22 (6)

Subscript RLS denotes Regularized Least Square, which is es-
sentially a ridge regression framework [14]. We will use the
RLS method as one of our baseline methods with α = 0.1

L
×

trace(XL
TXL). (Heuristic Choice)

3.2. Frequency Domain Estimation (FD)
In the Short-Time Fourier Transform (STFT) domain, assuming
noiseless recordings we can rewrite Equation (2) as:

XR(θ, k) = HRTF (θ)XL(θ, k) (7)

Where θ denotes the frequency bin and k denotes the frame index.
A straightforward estimate of the RTF can be found using:

ĤRTF (θ) =

∑
kX

?
L(θ, k)XR(θ, k)∑
k |XL(θ, k)|2 (8)

The numerator is a sample estimate of the cross Power-Spectral Den-
sity (PSD), and the denominator is a sample estimate of the auto
PSD. As discussed in [1] this method produces a biased estimate. In
future discussions we will refer to this method by FD and include it
in our comparative experiments as another baseline method.

3.3. Non-Stationarity based FD Estimation (NSFD) [1]
This method depends on the assumption that the noise signals are
stationary, or at least “less dynamic” when compared to the target
speech signal. Again in the STFT domain we can represent the
model as:

XR(θ, k) = HRTF (θ)XL(θ, k) + E(θ, k) (9)

Where E denotes the environmental noise. If we consider that
HRTF is static for a specific interval and divide that interval into P
frames, then for the pth frame:

ΦpXRXL
(θ) = HRTF (θ)ΦpXLXL

(θ) + ΦpEXL
(θ) (10)

Where, ΦpAB(θ) denotes the (cross) power spectral density be-
tween A and B during the pth frame. Since the noise is stationary,
we can write ΦpEXL

= ΦEXL and solve the overdetermined set of
equations for p = 1...P , to estimate HRTF . As in the FD case, in
practice the PSDs in the above set of equations are replaced by their
sample based estimates.

4. STRUCTURED SPARSE BAYESIAN LEARNING (S-SBL)

In presence of noise, in order to make the LS solution stable we
will use a novel regularization strategy by incorporating the structure
information of ReIRs as a prior in a Bayesian framework. The main
difference of our work from [9] is that we consider both the sparse
early reflections and the reverberation tail in a unified framework.
Moreover, we do not need any a priori knowledge of SNR since the
noise variance is also estimated within the proposed framework.

4.1. Model

Consider the following model, xR = XLh+ε, along with the Gaus-
sian Likelihood assumption i.e, p(xR|h) ∼ N(XLh, σ

2).
The prior distribution over h is proposed to follow:

p(h|γi, c1, c2) ∼ N(0,Γ) (11)

With:

Γ = diag
[
γ1, ..., γP , c1e

−c2 , ..., c1e
−c2m, ..., c1e

−c2M
]

(12)

Where:

• γp corresponds to pth early reflection

• c1e−c2m corresponds to mth tap out of the M exponentially
decaying reverberation tail components

Note that the proposed approach follows a Relevance Vector Ma-
chine (RVM)/Sparse Bayesian Learning (SBL) [15] framework to
incorporate the sparse regularization. In this variant of SBL we have
also incorporated the reverberation tail regularization by tying the
last M diagonal elements of Γ in an exponentially decaying tail.
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4.2. Bayesian Inference
We will follow a Type II likelihood/Evidence maximization [16, 17]
procedure to estimate the ReIR. For estimating h we will compute
the posterior:

p(h|xr; γ, c1, c2) = N(h;µ,Σ) (13)

Where
µ = σ−2ΣXT

LxR (14)

Σ = (σ−2XT
LXL + Γ−1)−1 (15)

Hence, we approximate the true posterior by a Gaussian distribution
whose mean and covariance depends on the estimated hyperparame-
ters. We can use ĥ = µ as the point estimate of the relative impulse
response.

For the estimation of the hyperparameters we will use an evi-
dence maximization approach, i.e:

Γ̂, ĉ1, ĉ2 = arg max p(xR|γi, c1, c2) (16)

We employ the Expectation-Maximization (EM) algorithm to solve
the above optimization because of its monotonic convergence prop-
erty.

To estimate the previously discussed hyperparameters we treat
the ReIR h as a hidden variable. In the E step, for iteration t we only
need to compute the following conditional expectation for all taps
i ∈ {1, . . . , P +M}:

< h2
i >= Eh|xR;γt,ct1,c

t
2,σ

2 [h2
i ] = Σ(i,i) + µ2

i (17)

where Σ(i,i) is the ith diagonal element of Σ. We use this E step to
compute the Q-function:

Q(γ, c1, c2, σ
2) = Eh|xR;γt,ct1,c

t
2,σ

2 [log(p(xR|h;σ2)p(h|γ, c1, c2))]

(18)
In the M step, maximizing this Q-function with respect to the

hyperparameters i.e, γ, c1, c2 and σ2, we get:

γp = Σ(p,p) + µ2
p for p = 1 . . . P (19)

c1 =
1

M

M∑
m=1

ec2m < h2
m+P > (20)

M∑
m=1

mec2m < h2
m+P > −c1

M(M + 1)

2
= 0 (21)

σ2 =
‖xR −XLh‖2

N − (M + P ) +
∑M+P
i=1 Σ(i,i)/Γi

(22)

In Equation (20) we will use the estimate of c2 from the previ-
ous iteration. We also need to solve Equation (21) to get the closed
form update rule of c2. Representing it as a polynomial of v = ec2 ,
we can show using Descartes’ sign rule that there is only one posi-
tive root v̂ of (21). Therefore we can update c2 using c2 = log v̂.
Hence, every iteration we will update all the hyperparameters using
the update rules shown above, and we can compute the point es-
timate ĥ substituting the updated hyperparameters in Equation (14).
In the following iteration we will start with the updated µ and Σ, and
recompute all the hyperparameters. In practice, 10 to 15 iterations
of the above S-SBL procedure yields a converged relative impulse
response estimate h.

Before moving on to experimental validation, in the next subsec-
tion we show the connection between S-SBL and the RLS method-
ology.

4.3. Connection between S-SBL and RLS
Simplifying Equation (14) we get,

µ = (XT
LXL + σ2Γ−1)−1XT

LxR (23)

Comparing this with Solution (5) we see that S-SBL can be
viewed as an iterative reweighted ridge regression/reweighted `2
norm minimization algorithm, where the penalty weight factor α is
not the same for all taps, and where the penalty weights are esti-
mated every iteration through γi, c1, c2 and σ2 which enforces the
desired ReIR structure through regularization. A similar connec-
tion between SBL and reweighted `2 minimization approach can be
found in [18].

5. EXPERIMENTAL VALIDATION

In this section we present the detailed experimental results to evalu-
ate several competing algorithms in term of their target signal block-
ing ability.

5.1. Experimental Settings
We follow the experimental setting described in [8] and use the pub-
licly available database of measured impulse responses [19] to gen-
erate the reverberant recordings. The signal for the target source has
been taken from the task of the online Signal Separation Campaign
(SISEC) 2013 [20]. All other details are summarized below in Table
1.

Table 1. Experimental Settings

Parameters Values
Sampling Frequency 8 kHz
SNRin 0 dB
Target Angle 0◦

Directional Noise Angle −60◦

Microphone Pair [3 4] (3 cm)
Distance between source and mic 2 m
T60 360 ms

The testing utterance (female talker) is 10 s long, which we di-
vide into intervals of 1024 samples, i.e., 128 ms at 8 kHz (Total
78 segments). Experiments are conducted on each interval indepen-
dently. The average Attenuation Rate (described in the next subsec-
tion) is been reported over the intervals where speech is present. For
all our experiments we use P = 30 for S-SBL, although we have
found out that our algorithm is not very sensitive to different choices
for P .

5.2. Performance Metric
To quantitatively evaluate the competing algorithms, we use a well-
known and widely used performance metric called the Attenuation
Rate.

The Attenuation Rate (ATR) can be evaluated as the ratio be-
tween SNRout and SNRin in dB scale, where:

SNRin =

∑
i=L,R

∑
n[(hi ? s)(n)]2∑

i=L,R

∑
n[εi(n)]2

(24)

and,
SNRout =

∑
n[(ĥrel ? sL)(n)− sR(n)]2∑
n[(ĥrel ? εL)(n)− εR(n)]2

(25)

The numerator of SNRout measures the leakage of the target signal
whereas the denominator measures the attenuation of the noise sig-
nal. Overall, the more negative the value of ATR is, the better is the
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blocking performance. A low ATR indicates a good noise reference
signal for further processing (such as single-channel postfiltering).

5.3. Results
In this section, we present results for the diffuse noise case (white
and babble) and directional noise case (white and interfering talker).

5.3.1. Diffuse noise
In Table 2 we show the average ATR obtained using all competing
algorithms for two diffuse noise cases. In first case the target speech
is contaminated by stationary Gaussian noise which has been gener-
ated independently for each channel and in the second case we have
used omnidirectional babble noise to contaminate the target signal.
As expected, all the algorithms perform better in presence of white
noise compared to the babble noise case. Next, the proposed S-SBL
approach achieves the best attenuation rate for both cases, most sig-
nificantly so in the babble noise case. Informal subjective listening
exercises to the output of the blocking matrix also consistently show
noticeable differences.

Table 2. ATR measure in diffuse noise scenario

Algorithms Diffused White Noise Omni Babble Noise
ATR (dB) ATR (dB)

FD -6.18 -3.68
NSFD -11.24 -5.18
RLS -7.36 -4.35
S-SBL (proposed) -12.05 -7.49

5.3.2. Directional Noise
In Table 3 we present the average ATR obtained using all competing
algorithms in directional noise. Specifically, in the first case the tar-
get speech is contaminated by directional Gaussian noise generated
following the experimental setting discussed above, and in the sec-
ond case we have used a male speaking interferer. This situation is
more challenging compared to diffuse noise, even more so when the
directional noise is a speech interferer. The performance of all the
algorithms is reduced in directional white noise when compared with
diffuse white noise. In Figure 1, 2 and 3 we show the spectrograms
of the clean speech and the noise reference signal obtained using S-
SBL and NSFD, respectively, in the case of directional white noise.
It is evident from Figure 3 that dominant low-frequency speech har-
monic structure is still present in the NSFD noise reference estimate.
For a speech interferer, when there is no Voice Activity Detection
(VAD) all algorithms struggle; particularly the FD and NSFD strug-
gle (each producing positive ATR). The main reason behind this re-
sult is that the RTF estimate could be that of the speech interferer,
since there is no way to distinguish who is the desired target. We
also present results assuming that an Oracle VAD is available and
see a significant improvement (as expected). In real life scenarios,
an oracle VAD can be substituted by a VAD operating on a close talk
microphone recording, or a phone microphone recording. We have
conducted such experiments using the database presented in [21] and
the results are encouraging.

6. CONCLUSION

We proposed a novel approach of estimating relative impulse re-
sponse in a dynamic environment, i.e, using very short, noisy, rever-
berant recordings. Our proposed time domain solution benefits from

Table 3. ATR measure in presence of directional noise

Algorithms White Talker (Oracle VAD) Talker (No VAD)
ATR (dB) ATR (dB) ATR (dB)

FD -3.98 -0.86 2.41
NSFD -10.37 -9.63 1.62
RLS -7.25 -11.40 -0.81
S-SBL -10.79 -15.72 -1.38

Fig. 1. Spectrogram of clean utterance recorded at left mic

Fig. 2. Spectrogram of the noise reference signal obtained using
S-SBL (Directional white noise)

Fig. 3. Spectrogram of the noise reference signal obtained using
NSFD (Directional white noise)

exploiting the prior relative impulse response structure during esti-
mation. Detailed experimental results also show consistent improve-
ment of our proposed approach over competing algorithms. Incorpo-
rating this relative impulse response estimation technique in a gen-
eralized sidelobe canceller structure to improve the binaural noise
suppression performance will be considered in our future works.
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