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ABSTRACT

In this paper, we present a new dereverberation algorithm based

on the weighted prediction error (WPE) method. In contrast to

the conventional WPE method which alternatively estimates the re-

verberation prediction weights and early speech spectral variance,

the proposed algorithm estimates the latter efficiently by employing

a geometric spectral enhancement approach and a proper estimate

for late reverberant spectral variance (LRSV). Hence, our algorithm

does not require iterations to estimate the reverberation prediction

weights nor needs alternation between the prediction weights and

the spectral variance of early speech. Performance assessments

demonstrate considerable improvements in terms of speech quality

measures and computational load compared to previous WPE-based

dereverberation methods.

Index Terms— Late reverberant spectral variance, linear

prediction-based dereverberation, statistical model-based speech

enhancement

1. INTRODUCTION

Acoustic signals captured by microphones in an enclosure are often

linearly distorted by reflections from walls and other objects. This

phenomenon, known as reverberation, degrades the quality and

intelligibility of speech, and therefore, restricts the performance

of speech processing systems including teleconferencing, voice-

controlled systems, hearing aids and automatic speech recognition

[1, 2]. Thus, it is essential to mitigate the undesirable effects of

reverberation in such applications.

Over the past decades, various dereverberation techniques have

been proposed, which can be broadly categorized into acous-

tic channel equalization, spectral enhancement and probabilistic

model-based approaches [3]. There are also a few approaches that

emerged recently such as [4, 5]. Although theoretically perfect

dereverberation is achievable by acoustic channel equalization, in

practice, the performance of such methods is dramatically limited

by the accuracy of the estimation of room impulse responses (RIRs)

and the need for robust equalization techniques [6]. Further, the

spectral enhancement methods originally developed for noise re-

duction purposes [7], introduce disruptive speech distortion while

providing limited reverberation suppression. One of the most favor-

able methods among the probabilistic model-based approaches is

the multi-channel linear prediction (MCLP) which is well suited to

the single source noiseless scenario. From a statistical viewpoint,

this blind reverberation suppressor is based on maximum likelihood

(ML) estimation, assuming an auto-regressive (AR) model for the

reverberation process [8, 9]. In its basic short-time Fourier trans-

form (STFT) domain implementation, referred to as the weighted

prediction error (WPE) method, an iterative algorithm is used to

alternatively estimate the reverberation prediction coefficients and

speech spectral variance using batch processing of speech utter-

ances (observations).

Considering the iterative nature of the WPE method, even though

it may converge within a small number of iterations, theoretically,

there is no guarantee on the convergence of the prediction weights.

Moreover, in practice, a speech utterance of at least a few seconds

is required for the batch processing step in order to obtain accurate

linear prediction (LP) weights. Therefore, the computational bur-

den, increased by the number of iterations, is one of the practical

limitations of this method. In this paper, we overcome this limi-

tation by introducing a suitable estimator for the speech spectral

variance and integrating it into the WPE method. Specifically, this

task is accomplished by resorting to the reverberation suppression

within the spectral enhancement literature [7] and employing the

statistical model-based estimation of late reverberant spectral vari-

ance (LRSV) [10] in order to estimate the speech spectral variance.

In addition to the performance merit with respect to the previous

WPE-based dereverberation methods, the presented approach offers

a considerable gain in reducing the implementation complexity.

2. WPE METHOD

In this section, we give a brief description of the WPE method from

a statistical viewpoint, that will help to set the notations for the

following sections. Consider a scenario where a single source of

speech is captured by microphones, all located within a noiseless

reverberant enclosure.. In the STFT domain, we denote the clean

speech signal by sn,k with time frame index n ∈ {1, . . . , N} and

frequency bin index k ∈ {1, . . . ,K}. Then, the reverberant speech

signal observed at the m-th microphone, xm
n,k, can be represented

in the STFT domain through a linear prediction model as [9]

xm
n,k =

Lh-1
∑

l=0

(

hm
l,k

)

∗

sn−l,k + emn,k, (1)

where hm
l,k is an approximation of the acoustic transfer function

(ATF) between the speech source and the m-th microphone in the

STFT domain with length of Lh, and (.)∗ denotes the complex con-

jugate operator. The additive term emn,k models the linear prediction

error and is often disregarded in the STFT domain [9, 11]. There-
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fore, the model in (1) can be rewritten as

xm
n,k = dmn,k +

Lh-1
∑

l=D

(

hm
l,k

)

∗

sn−l,k, (2)

where dmn,k =
∑D−1

l=0

(

hm
l,k

)

∗

sn−l,k is the sum of anechoic (direct)

speech and early reflections at the m-th microphone, and D corre-

sponds to the duration of the early reflections. Most dereverberation

techniques, including the WPE method, aim at reconstructing dn,k

as the desired signal, since the early reflections actually improve

speech intelligibility and also the SNR in noisy environments [12].

Replacing the convolutive model in (2) by an auto-regressive model

results in the well-known multi-channel linear prediction (MCLP)

form for the observation at the first microphone, as the following

[9]

d1n,k = x1
n,k −

M
∑

m=1

(gm
k )H

x
m
n−D,k, (3)

where d1n,k ≡ dn,k is the desired signal, (.)H is the hermitian oper-

ator, and the vectors xm
n−D,k and gm

k are defined as

x
m
n−D,k = [xm

n−D,k , xm
n−D−1,k , . . . , xm

n−D−(Lk−1),k]
T,

g
m
k = [gm0,k , gm1,k , . . . , gmLk−1,k]

T. (4)

gm
k is the regression vector (reverberation prediction weights) of

order Lk for the m-th channel. Considering each of the vector sets

{xm
n−D,k} and {gm

k } for m = 1, 2, . . . ,M and concatenating them

over m to respectively form xn−D,k and gk, (3) is written in the

compact form

dn,k = x1
n,k − g

H
k xn−D,k, (5)

Estimation of the regression vector gk and using it in (5) gives the

WPE estimate of the desired speech. From a statistical viewpoint,

this is performed in [9] by using the maximum likelihood (ML) es-

timation of the desired speech dn,k at each frequency bin. The con-

ventional WPE method [8, 9] assumes a circular complex Gaussian

distribution for each of the desired speech STFT coefficients, dn,k,

with time-varying power spectrum and zero mean. Assuming inde-

pendence across time frames, n, the joint distribution of the desired

speech coefficients at frequency bin, k, is given by

p(dk) =
N
∏

n=1

p(dn,k) =
N
∏

n=1

1

πσ2
dn,k

exp

(

−
|dn,k|

2

σ2
dn,k

)

, (6)

with σ2
dn,k

being the time-varying spectral variance of the desired

speech. Now, by inserting dn,k from (5) into (6), it can be ob-

served that the set of unknown parameters at each frequency bin

consists of the regression vector, gk, and the desired speech spec-

tral variances σ2
dk

= {σ2
d1,k

, σ2
d2,k

, . . . , σ2
dN,k

}. Denoting this set

by Θk = {gk, σ
2
dk

}, and taking the negative of logarithm of p(dk)
in (6), the objective function for the parameter set Θk can be written

as

J (Θk) = − log p(dk|Θk) =

N
∑

n=1

(

log σ2
dn,k

+

∣

∣x1
n,k − gH

k xn−D,k

∣

∣

2

σ2
dn,k

)

. (7)

where we neglected the constant terms. Here, (7) has to be mini-

mized at each frequency bin with respect to the parameter set Θk.

Even though minimization of (7) over σ2
dk

or gk is straightforward,

a joint optimization of (7) with respect to both subsets of parameters

cannot be performed analytically. Thus, a two-step process is used

in [8, 9] wherein one of the two parameter subsets is estimated at

each step by means of an ML estimation, given an estimate of the

other. The entire process is iteratively continued until some con-

vergence criterion is satisfied or a maximum number of iterations

is reached. More specifically, at the i-th iteration, (7) is minimized

with respect to the set of variances σ2
dk

, leading to the following

simple estimate for each σ2
dn,k

σ2
dn,k

(i)
=
∣

∣

∣dn,k
(i−1)

∣

∣

∣

2

, n = 1, 2, . . . , N. (8)

where dn,k
(i−1) is the desired speech estimate from the previous

iteration. For the first iteration, it is suggested in [8, 9] to use x1
n,k

as the initial value for this term. Next, minimization of (7) with

respect to the regression vector gk results in a conventional least

squares problem with the following closed-form solution,

gk
(i) =





N
∑

n=1

xn−D,kx
H
n−D,k

σ2
dn,k

(i)





−1
N
∑

n=1

xn−D,k

(

x1
n,k

)

∗

σ2
dn,k

(i)
, (9)

The estimated gk above is then used in (5) to obtain dn,k’s, which

in turn, are exploited to estimate σ2
dn,k

’s for the next iteration, ac-

cording to (8). Often in practice, 3 to 5 iterations lead to the best

possible results [12], yet, there is no guarantee or a widely accepted

criterion on the convergence of the method. Applying more iter-

ations does not necessarily result in improvements and may even

degrade the performance. Furthermore, instantaneous estimates of

the desired speech variance as given by (8) may lead to very small

values that deteriorate the overall performance. The aforementioned

disadvantages can be mitigated by employing a proper estimate of

the spectral variance of desired speech, as explained in the follow-

ing section.

3. WPE BASED ON EARLY REVERBERANT SPECTRAL

VARIANCE ESTIMATION

In this section, we propose an efficient estimator for the spectral

variance of the desired speech, σ2
dn,k

, based on the statistical mod-

eling of ATF, and incorporate this estimator within the WPE dere-

verberation algorithm. As seen from (1)-(2), the desired speech

dn,k is in fact the sum of the first D delayed and weighted clean

speech terms, sn−l,k. In the context of statistical spectral enhance-

ment methods [7, 10], dn,k is often referred to as early speech, as

compared to late reverberant speech given by the sums in (2) and

(3). Therefore, the observation at the first microphone can be rewrit-

ten as

x1
n,k = dn,k + rn,k, (10)

with rn,k denoting the late reverberant speech. Several methods

are available in the spectral enhancement literature for the estima-

tion of σ2
dn,k

in (10), such as the decision directed (DD) approach

for direct-to-reverberant ratio (DRR) estimation [7]. Using this

method, σ2
dn,k

can be obtained as the product of the estimated DRR,

i.e., σ2
dn,k

/σ2
rn,k

, and an estimate of the late reverberant spectral

variance, σ2
rn,k

. However, the application of conventional spectral

enhancement techniques, originally developed for noise reduction

purposes, is based on the assumption of independence between dn,k

and rn,k. Here, however, contrary to the scenario of additive noise,

as evidenced from the model in (1) and (2), the early and late rever-

berant terms are basically correlated, due to the temporal correlation

across successive time frames of speech signal. Therefore, the non-

zero correlation between dn,k and rn,k must be taken into account.

Doing so, it follows from (10) that

σ2
x1
n,k

= σ2
dn,k

+ σ2
rn,k

+ 2E
{

<{dn,k r∗n,k}
}

, (11)
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with <{.} denoting the real value and 2E
{

<{dn,k r∗n,k}
}

repre-

senting the non-zero cross-correlation terms between dn,k and rn,k.

Nevertheless, the estimation of the cross-correlation terms in (11),

due to their dependency on the phases of dn,k and rn,k, may not be

analytically tractable.

In [13], a spectral subtraction algorithm for noise suppression has

been proposed based on the deterministic estimation of speech mag-

nitudes in terms of observation and noise magnitudes without as-

suming that they are independent. Therein, the authors consider the

following similar problem to (11), that is

∣

∣x1
n,k

∣

∣

2
= |dn,k|

2 + |rn,k|
2 +

2 |dn,k| |rn,k| cos
(

θdn,k
− θrn,k

)

. (12)

where |dn,k| is to be estimated in terms of |x1
n,k| and |rn,k|, and

θdn,k
and θrn,k

are the unknown phases of dn,k and rn,k respec-

tively. Through a geometric approach, the following estimate of

|dn,k| is then obtained

∣

∣

∣d̂n,k

∣

∣

∣ =

√

√

√

√

1− (γ−ξ+1)2

4γ

1− (γ−ξ−1)2

4ξ

∣

∣x1
n,k

∣

∣ , (13)

where the two parameters ξ and γ are defined as

ξn,k ,
|dn,k|

2

|rn,k|
2 , γn,k ,

∣

∣x1
n,k

∣

∣

2

|rn,k|
2 , (14)

Herein, we propose to employ this approach in order to provide a

correlation-aware estimate of |dn,k|, to be exploited in turn in the

estimation of σ2
dn,k

.

Due to the unavailability of |dn,k|
2

and |rn,k|
2
, the two parameters

in (14) are not available a priori and have to be substituted by their

approximations. To this end, we exploit | ˆdn−1,k|
2 for |dn,k|

2
and

a short-term estimate of σ2
rn,k

for |rn,k|
2
. To determine the lat-

ter, we resort to the statistical model-based estimation of the LRSV,

which has been widely used in the spectral enhancement literature.

Therein, an estimate of this key parameter is derived using a statisti-

cal model for the ATF along with recursive smoothing schemes. In

brief, the following scheme is conventionally used to estimate the

LRSV [10]:

σ2
x1
n,k

= (1− β) σ2
x1
n−1,k

+ β
∣

∣x1
n,k

∣

∣

2
, (15a)

σ2
r̃n,k

= (1− κ) σ2
r̃n−1,k

+ κ σ2
x1
n−1,k

, (15b)

σ2
rn,k

= e−2αkRNe σ2
r̃n−(Ne−1),k

. (15c)

where αk is related to the 60 dB reverberation time, T60dB,k,

through αk = 3 log 10/ (T60dB,kfs) with fs as the sampling

frequency in Hz, R is the STFT time shift in samples, β and κ
are smoothing parameters (which can be in general frequency-

dependent) and Ne is the delay parameter defining the number of

assumed early speech frames, which is herein taken as D. The term

r̃n,k actually represents the entire reverberant speech including

both early and late reverberant terms, but excluding the first early

term. Using the LRSV estimator in (15), the short-term estimate

of σ2
rn,k

is obtained by choosing the smoothing parameters β and

κ close to one. In this way, the estimate of σ2
rn,k

is updated faster,

and is therefore closer to the true value of |rn,k|
2
. Yet, to avoid

too small values of the approximated |rn,k|
2

in the denominator of

(14), a lower bound is applied to this quantity.

Now, given the estimate of early speech magnitude, |d̂n,k|, pro-

vided by (13), it is simple to use a recursive smoothing scheme to
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Fig. 1: Improvement in (a): PESQ and (b): CD measures versus the

number of iterations for different methods. The reported values are

obtained as the averaged improvements over all utterances.

estimate σ2
dn,k

, as the following

σ̂2
dn,k

= (1− η) σ̂2
dn−1,k

+ η |d̂n,k|
2, (16)

with η as a fixed smoothing parameter. This estimate of σ2
dn,k

can

be efficiently integrated into the WPE method discussed in Section

2, replacing the instantaneous estimate given by (8). By doing so,

the objective function in (7) turns into a function of only the re-

gression vector, gk, and it is possible to obtain the latter without

iterations by (9).

4. PERFORMANCE EVALUATION

To evaluate the performance of the proposed approach, clean speech

utterances were used from the TIMIT database [14], including 10

male and 10 female speakers. The sampling rate was set to 16 kHz

and a 50 ms Hamming window with the overlap of 75% was used

for the STFT analysis-synthesis. The number of early speech terms,

i.e. D, was set to 3 and to obtain the best achievable performance,

we used the first 10 second segment of the reverberant speech to es-

timate gk. To implement the proposed method in Section 3, we set

the minimum value of the estimated σ2
rn,k

from (11) to ε = 10−3

before using it in (15). As for the recursive smoothing schemes in

(15), we took β and κ to be 0.50 and 0.80, respectively, and chose

Ne as 3. Also, the reverberation time, T60dB,k, in (15) was es-

timated blindly by the approach introduced in [15]. Our method

requires no prior knowledge of the DRR parameter.

To generate reverberant noisy speech signals for the scenario

in Fig. 1, we convolved the clean speech utterances with measured

RIRs and added real-world noise with SNR of 10dB. The RIRs and

recorded noise were taken from the SimData of the REVERB chal-

lenge [16], where an 8 channel circular array with diameter of 20cm
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Fig. 2: (a): PESQ and (b): CD measures versus T60dB for the re-

verberant speech and the enhanced one using the WPE method with

different estimators of the early speech spectral variance, σ2
dn,k
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Fig. 3: Processing time required for the estimation of gk with

lengths of Lk = 15 and Lk = 30 from a 10 secs. speech segment

for different methods. A i5-2400 CPU @ 3.10GHz with RAM:

4.00GB was used for the implementation using Matlab.

was used in a 3.7m×5.5m room. In Fig. 1, performance compari-

son of the proposed method with respect to the conventional, two

recent WPE-based methods, and using spectral enhancement [7] is

illustrated in terms of PESQ (perceptual evaluation of speech qual-

ity) and CD (cepstral distance) [17]. The values of ∆PESQ and

∆CD represent the improvements in these quantities relative to the

corresponding value for the reverberant speech, denoted in the fig-

ure as “ref”. Recently, there has been growing interest in the use of

properly fitted distributions for speech priors and estimation of their

parameters. In the context of WPE-based methods, this has been ac-

complished by using Laplacian and complex generalized Gaussian

(CGG) priors, respectively in [18] and [19]. As seen in Fig. 1, the

Laplacian-based method is capable of providing considerable per-

formance improvements with respect to the conventional WPE in

Section 2, whereas the CGG-based gives trivial improvements. The

latter, as concluded in [19], is actually similar to the same conven-

tional WPE method but with a different instantaneous estimator for

the desired speech spectral variance, σ2
dn,k

. However, the proposed

method in Section 3, in addition to being non-iterative, is able to

provide a more efficient and accurate estimate of σ2
dn,k

. It is also

observable that the spectral enhancement method with an LRSV es-

timator is not as efficient as the WPE-based methods for the purpose

of dereverberation.

Next, to evaluate experimentally the efficiency of the proposed es-

timate for σ2
dn,k

in Section 3, we considered two other recursive

smoothing-based schemes to update σ2
dn,k

and compared their per-

formance with the proposed one in Fig. 2. In this case, to generate

reverberant speech signals with controllable amount of reverbera-

tion, we convolved synthetic RIRs generated by the image source

method (ISM) [20] with the anechoic speech utterances. We consid-

ered a scenario where the speech source is 1.5 m away from the two

omni-directional microphones capturing the reverberant speech. As

in [7], we used the well-known DD approach to estimate the ratio

σ2
dn,k

/σ2
rn,k

and then multiplied it by the LRSV estimate from (11)

to obtain an estimate of σ2
dn,k

, which is denoted in Fig. 2 as the “DD

Approach”. To demonstrate the importance of taking into account

the cross-correlation terms between the desired and late reverberant

speech, as in (12), we estimated the desired spectral variance, σ2
dn,k

,

by disregarding the cross terms in (12) and using σ2
x1
n,k

−σ̂2
rn,k

. Since

the observation spectral variance is estimated by a fixed recursive

smoothing scheme, we denoted this method by “Smoothing of Ob-

servations”. Referring to Fig. 2, it is observable that the proposed

estimation of σ2
dn,k

results in further reverberation suppression, es-

pecially for higher reverberation conditions where the amount of

correlation between the desired and late reverberant speech sig-

nals increases. It should be noted that the proposed estimator of

the desired speech spectral variance can also be used in spectral

enhancement-based methods, yet, the dereverberation performance

of the latter was found to be inferior to the LP-based methods. We

also evaluated experimentally the computational cost of our pro-

posed algorithm using the estimation of σ2
dn,k

discussed in Section

3, proposed algorithm using the DD approach to estimate σ2
dn,k

;

and the conventional WPE method using a maximum of 3 iterations.

The results are presented in Fig. 3 in terms of the batch processing

time needed to estimate the WPE regression vector. As seen, by

eliminating the iterative process of the WPE method through the

proposed algorithm, the computational effort has been considerably

reduced.

5. CONCLUSION

We presented a novel LP-based dereverberation algorithm by

proposing an efficient estimation scheme for the spectral vari-

ance of early speech. The spectral variance estimate is obtained

through a geometric spectral enhancement approach and a conven-

tional LRSV estimator, based on the correlation between the early

and late reverberant terms. Using the proposed algorithm, the well-

known WPE method can be implemented in a non-iterative fashion,

and thanks to the efficient estimate of the early speech spectral

variance, significant improvements in speech quality and reduction

in implementation complexity can be achieved with respect to the

previously proposed WPE-based methods.
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