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ABSTRACT

Sparse Non-negative Matrix Factorization (SNMF) and Deep
Neural Networks (DNN) have emerged individually as two
efficient machine learning techniques for single-channel
speech enhancement. Nevertheless, there are only few
works investigating the combination of SNMF and DNN for
speech enhancement and robust Automatic Speech Recog-
nition (ASR). In this paper, we present a novel combination
of speech enhancement components based-on SNMF and
DNN into a full-stack system. We refine the cost function
of the DNN to back-propagate the reconstruction error of
the enhanced speech. Our proposal is compared with several
state-of-the-art speech enhancement systems. Evaluations are
conducted on the data of CHiME-3 challenge which consists
of real noisy speech recordings captured under challenging
noisy conditions. Our system yields significant improvements
for both objective quality speech enhancement measurements
with relative gain of 30%, and a 10% relative Word Error
Rate reduction for ASR compared to the best baselines.

Index Terms— Speech Enhancement, Automatic Speech
Recognition, Non Negative Matrix Factorization, Deep Neu-
ral Network, CHiME-3 challenge

1. INTRODUCTION

Speech enhancement (SE) aims to provide methods to im-
prove the audio quality of noisy speech recordings. This topic
has been studied for more than 50 years, and has produced
successful approaches, especially statistics based methods [1]
able to efficiently reduce the contribution of noise in degraded
signals as long as the stationary noise assumption is respected.
More recently, several works based-on machine learning al-
gorithms such as Sparse Non-negative Matrix Factorization
(SNMF) and Deep Neural Networks (DNN) have achieved
significant improvements for non-stationary noises [2, 3].

SNMF-based SE methods [4], originated from [5], project
the spectral features extracted from clean speech and noise
signals into subspaces modelled as linear combinations of non
negative basis vectors weighted by non negative activation
coefficients. Enhancement of noisy speech is achieved in

a supervised manner using the speech and noise basis vec-
tors to estimate the speech and noise activation coefficients
[3]. However, the linear mapping assumption used in SNMF
will fail when speech and noise overlap in the feature do-
main or share similar bases. Several SNMF-based approaches
have already addressed this limitation, first by jointly train-
ing the noise and speech basis vectors in order to produce
more discriminant subspaces [6, 7, 8], and also by using non-
linear mapping functions (typically with DNNs) to estimate
the speech and noise coefficients [9].

DNN-based SE [2, 10] relies on the ability of Deep Neu-
ral Networks to estimate complex non-linear functions used
to directly map log spectral features of noisy speech into cor-
responding clean speech signals and therefore may be more
efficient in separating noise and speech in case of overlap-
ping sub-domains. Temporal dependencies of speech are usu-
ally considered by extracting features on sliding context win-
dows. DNN-based SE methods have been reported to yield
good preservation of temporal and spectral speech character-
istics. Nevertheless, training from raw speech features re-
quires the estimation of billions of low-level parameters on
potentially limited amount of data, and therefore may lead to
poorly generic non-linear mapping functions.

In this paper, we propose a novel SNMF-based SE frame-
work (presented Figure 1) integrating a Deep Neural Net-
work. Contrarily to [9], the DNN is here used to produce a
non linear mapping function between the SNMF activation
coefficients of noisy signals to the equivalent activation co-
efficients of clean speech. One motivation of pre-processing
noisy recordings with supervised NMF is that the projection
of noisy signals into the lower dimension of NMF may first
reduce the complexity of DNN training, and also produce a
better DNN initialization, thanks to injecting prior knowl-
edge gained with unsupervised SNMF on training data. In
this work, we also propose a DNN architecture augmented
by a supplementary layer in charge of reconstructing the log
spectral features of the enhanced output speech signal. The
injection of the reconstruction error of the output signal into
the cost function of the machine-learning algorithm has pre-
viously been proven efficient using a discriminative SNMF-
based framework during the estimation of the basis vectors
from training data [6]. The reconstruction error computed as
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Fig. 1. Novel NMF & DNN-based Speech Enhancement

the distance between the log spectrum of the reconstructed
signal and the log spectrum of the target clean speech is then
back-propagated through the DNN at the learning time. Using
this specific cost function, we expect to adapt the DNN to the
final reconstructed signal considered in the evaluation of SE
performances. Our proposal has been evaluated both for the
tasks of Speech Enhancement and Automatic Speech Recog-
nition (ASR) using several objective metrics. Our results have
been systematically compared to several state-of-the-art DNN
and SNMF-based SE systems [2, 3, 4, 9]. Evaluations have
been conducted using the framework provided recently by the
CHiME-3 challenge [11] on speech separation and recogni-
tion on challenging real noisy speech recordings. Evaluations
yield that our proposal outperforms the state-of-the-art sys-
tems used for comparison on both SE and ASR tasks.

The remainder of this paper is as follows. In Section 2
we detail our novel SNMF-based SE framework employing
DNN with modified cost function. Experiments are reported
and discussed Section 3. We conclude this work in Section 4.

2. SYSTEM DESCRIPTION

We describe now a novel architecture derived from a SNMF-
based Speech Enhancement framework (Figure 1). Our pro-
posal consists in three main steps: an unsupervised learning
of SNMF speech and noise basis vectors estimated on la-

belled data as in [4]; a supervised SNMF-based feature ex-
traction from noisy speech recordings using the noise and
speech bases estimated at the previous stage; a DNN-based
SE module used to learn a non-linear mapping function be-
tween the SNMF activation coefficients and optimised to min-
imize the Mean Squared Error (MSE) between the log spec-
trum of the enhanced signal and the target clean speech.

2.1. NMF-based speech and noise bases estimation

We first estimate the basis vectors of clean speech and noise
using the unsupervised SNMF algorithm [4]. SNMF assumes
the spectral magnitude of a noisy signal V ∈ RF×T (F the
number of frequency bins and T the number of time frames)
can be modelled as the linear combination of non negative
basis vectors W ∈ RF×B (with B the number of bases) and
non negative activation coefficients H ∈ RB×T . The SNMF
algorithm estimates W and H by minimizing the distance
between V and WH computed using the Kullback-Leibler
divergence and a sparseness constrain on H in the L1 norm:

W,H = min
W,H

D(V||WH) + µ||H||1 (1)

W and H are estimated using iterative multiplicative up-
date rules as described in [4].

H ← H�
W

T V
WH

W
T
1 + µ

(2)

W ← W �
V

WH
HT + 1(1HT �W)�W

1HT + 1( V
WH
�W)�W

(3)

We note WS and WN the bases of clean speech and
background noise estimated on labelled training data. Exper-
imentally, we applied 20 iterations of the algorithm, on single
frame analysis windows and a sparseness constrain of 1.

2.2. Feature extraction using supervised SNMF

We first fix the speech and noise bases [WS WN ] estimated
on training data, and then estimate the noise and speech ac-
tivation coefficients ĤS and ĤN on noisy speech recordings
using the iterative multiplicative update rules in equation 2.

The activation coefficients are then used as input features
of the DNN, instead of raw spectral coefficients as in [9] or the
log spectrum in [2]. For each frame of noisy speech (at index
position t), we build a large vector composed of the concate-
nation of the activation coefficients of speech ĥS,t and noise
ĥN,t vectors extracted on each frame on an analysis windows
of width (2K + 1) frames centred on the tth frame.

2.3. DNN training using SNMF-based reconstruction

A feed-forward DNN architecture presented Figure 1 is in-
troduced to map noisy to clean activation coefficients. The
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DNN consists of three sigmoid hidden layers and one sigmoid
output layer. In order to obtain a more discriminative DNN
training, we augmented the structure with one additional layer
producing the reconstructed log spectrum vector x̂t from the
corresponding estimated NMF coefficients h̆t = [h̆TS,th̆

T
N,t]

T

and vt the input noisy spectral magnitude vector. We use the
Wiener filter reconstruction as formalized in equation 4, with
� and / the element-wise product and division.

v̂t(h̆t,WS ,WN , vt) =
WS h̆S,t

WS h̆S,t + WN h̆N,t

� vt (4)

x̂t(h̆t,WS ,WN , vt) = log
(
v̂t
)

(5)

The objective function E to be minimized is the Mean
Squared Error between the log spectrum of the reference xt
and reconstructed signals x̂t. The MSE is back-propagated to
all layers of the DNN in a mini-batch training manner.

E =
1

2N

N∑
t=1

‖xt − x̂t‖22 (6)

The partial gradient of the cost function E used to esti-
mate the network’s weights can be expanded as follows:

∂E

∂W
=
∂E

∂x̂t

∂x̂t

∂h̆t

∂h̆t
∂W

(7)

We derive ∂x̂t/∂h̆t over speech coefficients h̆S,t and
noise coefficients h̆N,t separately according to Equation 4.
Using chain rule, these gradients can be derived as below:

∂x̂t

∂h̆S,t
= WS

[
vt �

(
st − rt

)
v̂t � r2t

]
(8)

∂x̂t

∂h̆N,t

= WN

[
vt � st
v̂t � r2t

]
(9)

where st and rt are respectively:

st = WS h̆S,t (10)

rt = WS h̆S,t + WN h̆N,t (11)

In the next section, we evaluate our proposal on both
Speech Enhancement and Speech recognition tasks.

3. EXPERIMENTS

In the following section, our system will be denoted (DNN-
SNMF-Coef). Contrarily to [2, 9], where DNNs are trained
of raw spectral features, we train the DNN on SNMF activa-
tion coefficients. Hence, to evaluate the influence of the input
features of the DNN, we introduce a variant of our framework
denoted (DNN-SNMF-Spec), where the DNN is learned on
spectral features to predict activation coefficients, and uses
the modified cost function computed on signal reconstruction.

3.1. Data and Metrics

The dataset provided with the evaluation framework of the
CHiME-3 challenge [11] on speech separation and recogni-
tion, is composed of real and simulated multi-channel noisy
speech recordings captured in 4 challenging noisy environ-
ments: bus (BUS), cafeteria (CAF), pedestrian zone (PED)
and street (STR). The training set is composed of 7138 utter-
ances of read speech taken from the WSJ-0 corpus [12]. We
prepare additional training data by simulating noisy speech
with randomized Signal over Noise Ratio (−5dB ≤ SNR ≤
+15dB) using the tools provided by CHiME-3. Our evalu-
ation set contains 2 × 2960 utterances (corresponding to the
combined original DEV and TEST datasets of the campaign)
for real and simulated noisy recordings.

Speech enhancement is evaluated in terms of Frequency-
Weighted segmental SNR (fwSNRseg) [13] and Ceptrum dis-
tance (CEP) [14]. These metrics respectively measure the
contribution of residual noise (fwSNRseg) and the speech dis-
tortion (CEP), and have both been reported to have high cor-
relation with subjective test evaluations [13]. fwSNRseg mea-
sures the Signal over Noise Ratio between the weighted log
power spectrum of clean target and the residual noise in the
enhanced signal. The cepstrum distance CEP provides an es-
timate of the log spectral distance between two spectra. The
performances on Automatic Speech Recognition are evalu-
ated in terms of Word Error Rate (WER).

WER(%) =

∑
(Insertion + Substitution + Deletion)

Nb of Words in reference

3.2. Baseline systems

Our system is systematically compared to several state-of-the-
art NMF and DNN-based SE methods:

• (SNMF): a conventional SNMF-based SE as in [3, 4];

• (DNN): a DNN-based SE where the DNN maps di-
rectly noisy speech to clean speech as in [2];

• (SNMF-DNN): a SNMF-based SE with DNN [9],
mapping noisy speech spectrum to SNMF coefficients.

For every evaluated systems, the spectral features have
been extracted with a Short Time Fourier with a 32ms Ham-
ming weighting window and 8ms-shift on signals sampled
at 16kHz. The dimension of the SNMF bases matrix is set
to 257× 100 (frequency bins x bases), estimated using 5% of
clean WSJ-0 for WS and 4×15 minutes of background noise
(bus, cafeteria, street and pedestrian) for WN . The DNN is
composed of 3 hidden layers of 3072 neurons. Its input fea-
tures are extracted on a context window of 11 frames centred
in the current frame. We follow the pre-training using Re-
stricted Boltzman Machine [15] as described in [2], with a
cross-validation (90%− 10%) on simulated noisy speech for
training and validation subsets. As a reminder, in the systems
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(DNN), (SNMF-DNN) and (DNN-SNMF-Spec), the DNN
is trained on the spectral features. In our proposed system,
(DNN-SNMF-Coef), the DNN is trained with NMF activa-
tion coefficients vectors of dimension 200 for each frame (100
coefficients for speech and noise respectively).

The ASR system is a classical Hidden Markov Models
with Gaussian Mixture Models acoustic models trained on the
clean speech utterance of the WSJ-0 corpus, prepared using
Kaldi [16] as described in the CHiME-3 ASR baseline [11].

3.3. Speech Enhancement and ASR Evaluation

Our system (DNN-SNMF-Coef) obtains the best perfor-
mance for both fwSNRseg (7.59dB) and CEP (4.35) metrics
as summarized Figure 2. It reached a gain of 7.59dB for
fwSNRseg metric and outperformed the 3 baseline systems
(DNN), (SNMF) and (SNMF-DNN) with respective relative
improvements of 160%, 80% and 31%. The (DNN) baseline
performed surprisingly bad and produced less than 0.1dB im-
provement compared to the score measured on the raw noisy
data. We assume this poor result of the (DNN) is caused
by the nature of the fwSNRseg evaluation metric since the
(DNN) performed well according to the CEP metric. We can
see how the enhanced signal produced by the (DNN) contains
a large contribution of residual noise but this DNN-based SE
finally produced a relatively small distortion. We observe
the benefit brought by introducing the modified cost function
computed on the reconstructed enhanced signal by measuring
the gain in performances obtained by (DNN-SNMF-Spec)
against (SNMF-DNN). The absolute improvement is equal
to about 1.2dB in terms of fwSNRseg and 0.66 points of gain
of CEP. By comparing the systems (DNN-SNMF-Spec) and
(DNN-SNMF-Coeff), we can appreciate how using either
NMF activation coefficients or spectral features as input of
the DNN impacts the performances. The absolute improve-
ment is equal to 0.62dB in terms of fwSNRseg and 0.28
points of CEP. These promising results obtained by our sys-
tem also highlight our approach is able to reduce both the

Fig. 2. Objective Evaluation with fwSNRseg and CEP metrics

contribution of residual noise and the level of distortion of
the speech signal.

Automatic Speech Recognition has been applied on the
speech utterances enhanced by our methods and the baselines.
For each enhancement method we report in Table 1 the over-
all WER obtained on real and simulated noisy speech utter-
ances of the CHiME-3 test set. The (DNN) baseline speech
enhancement improves significantly the WER with 47.6%.
(SNMF) and (SNMF-DNN) systems improve WER by 6%
and 19% respectively. Our proposed system achieves the best
results with 43.7% WER, corresponding to 31% and 10%
relative WER reduction compared to respectively the non-
enhanced noisy speech and the (DNN) best baseline. Using
NMF coefficients in (DNN-SNMF-Coef) or spectral features
in (DNN-SNMF-Spec) as DNN inputs yields small difference
in this experiment with 0.3%WER absolute improvement.

Table 1. WER (%) on simulated and real noisy speech
Speech Enhancement Overall WER
No enhancement 63.0%
DNN 47.6%
SNMF 59.0%
SNMF-DNN 51.2%
DNN-SNMF-Spec 44.0%
DNN-SNMF-Coef 43.7%
Clean speech 21.6%

4. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel SNMF-based SE frame-
work integrating Deep Neural Network. We trained DNNs
to map SNMF activation coefficients of noisy speech to their
clean version, by back-propagating the reconstruction errors
of enhanced signals in the log spectral domain. Evaluations
have been done on the real and simulated data of the CHiME-
3 challenge and we have compared our proposal against sev-
eral baseline methods. Our system has reached the best results
by improving performances for both speech enhancement and
Automatic Speech Recognition. Compared to the best base-
lines, we report a relative gain of 30% in terms of frequency-
weighted segmental SNR, and 10% relative reduction of Word
Error Rate. In future works, we will integrate more discrim-
inative training of the SNMF bases and coefficients. We will
also produce thorough analyses on the impact of SNMF and
DNN parameters such as the architecture of DNN, the number
of basis vectors and sparseness factor of the SNMF method.
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