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ABSTRACT

Estimating unknown background noise from single-channel
noisy speech is a key yet challenging problem for speech
enhancement. Given the fact that the background noises typ-
ically have the repeating property and the foreground speech
is sparse and time-variant, many literatures decompose the
noisy spectrogram directly in an unsupervised fashion when
there is no isolated training example of the target speak-
er or particular noise types beforehand. However, recently
proposed methods suffer from un-interpretable decomposed
patterns, neglecting the temporal structure of the background
noise or being constrained by the pre-fixed parameters. To
settle these issues, we propose a novel method based on au-
tocorrelation technique and convolutive non-negative matrix
factorization. The proposed method can adaptively estimate
the underlying non-negative repeating temporal patterns from
noisy speech and identify the clean speech spectrogram si-
multaneously. Experiments on NOIZEUS dataset mixed
with various real-world background noises showed that the
proposed method performs better than some state-of-the-art
methods.

Index Terms— Speech enhancement, non-negative re-
peating temporal patterns, autocorrelation, convolutive non-
negative matrix factorization

1. INTRODUCTION

The goal of single-channel speech enhancement is to improve
the intelligibility and fidelity of noisy speech by attenuating
background noises in a single-channel recording. The dif-
ficulty arises from the unpredictable and high variability of
real-world interferers. It is particular difficult to impose math-
ematical constraints on the encountered noise that are both
discriminating enough to facilitate good separation, and suf-
ficient flexible to handle unseen noises.

Numerous approaches have been proposed to address this
challenging task. Among them, traditional algorithms such as
spectral subtraction, Wiener filtering, and statistical-model-
based method assume that the background noise is stationary
and that the noise can be modeled by a single spectral profile
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or using a single speech-to-noise ratio (SNR) [1]. These algo-
rithms are popular and widely used as they require neither the
identity of the specific speaker nor knowing the noise type.
An estimation of the noise ensures these algorithms work.
The main problem of these approaches is that they are hard to
handle non-stationary noises that are difficult to predict and
estimate. Furthermore, complex noises are poorly modeled
by a single spectral profile or SNR regardless of what kind of
sophisticated models are used.

Another set of techniques that attracts much attention
is grounded on compositional models such as non-negative
matrix factorization (NMF) [2] and probabilistic compo-
nent analysis (PLCA) [3]. They are able to figure out the
component sources from the mixtures and evaluate their cor-
responding contributions in a highly interpretable fashion,
whether the noise is stationary or not. One of the problems
of these approaches is how to relate the obtained components
to the ground truth knowledge, i.e. which component corre-
sponds to speech and which one to noise. Although it can be
addressed by using the supervised manner, isolated training
example becomes essential [4]. This poses serious challenges
due to the need of additional information is typically difficult
to be satisfied. Moreover, when the actual source fails to cope
with the training examples, the performance rapidly decline.

Recently, an emerging paradigm that explores the repeti-
tion property of spectrogram has been employed for speech
separation and enhancement [5]. The basic premise un-
derlying is that the background noise spectrogram has a
repetitive low-rank structure while the foreground speech
is time-varying and sparse. The premise is appealing as it
requires neither the prior estimation of noise or speech mod-
el, nor the stationary assumption of background noise. The
recently-developed robust principle component analysis (R-
PCA), based on a well-behaved convex optimization, is a
proper candidate to provide such a solution [6]. However,
the decomposed negative components of RPCA are difficult
to interpret. Meanwhile, the Euclidean distance used to de-
fine the objective function of RPCA is often criticized for
over-emphasizing on the high-energy components [7].

In this paper, we propose a novel method in Section 2
that introduces the adaptive non-negative temporal model
to the sparse and low-rank decomposition framework. The
proposed method efficiently extracts the underlying unknown
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background noise from mixture, enhancing the noisy speech
simultaneously. We discuss the relationship between our
method and the related prior work in Section 3. Section 4 re-
ports the experimental results of the proposed algorithm and
the competitive methods. We conclude the paper in Section
5.

2. THE PROPOSED METHOD

The proposed method treats background noise as a concate-
nation of a small subset of temporal repeated patterns and re-
casts the problem of noise modeling as estimating the under-
lying repeated patterns in the present of speech. Fig.1. gives
an overview of the proposed method. As we can see in the
flowchart, the proposed method can be divided into three step-
s: identification of the underlying repeating period T (Step1),
extraction of the underlying non-negative repeating temporal
patterns (Step2), and speech reconstruction (Step3).
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Fig. 1. The flowchart of the proposed framework.

Given the short-time Fourier transform (STFT) of noisy
speech, we first derive its magnitude spectrogram Y which is
a non-negative matrix Y ∈ Rm×n

≥0 and retain the phase ∠Y
for time-domain signal reconstruction later.

2.1. Repeating Period Estimation

Autocorrelation is one of the most widely used techniques to
detect the underlying period. There are numerous methods
dealing with this problem [5], [8]. By operating on the pow-
er spectrogram which emphasizes the appearance of peaks of
periodicity, we can calculate the acoustic self-similarity vec-
tor whose j th element is as follows:

a(j) =
n∑

i=1

m−j+1∑
k=1

Y (i, k)
2
Y (i, k + j − 1)

2

n(m− j + 1)
(1)

where i, j and k are used to denote the element position in a
matrix.

Subsequently, after normalizing by its first term (i.e.
a(j) ← a(j)/a(1) ), we can predict the repeating period by
following the recipe proposed in [5]. The procedure is quite
straightforward, and its basic idea is to find which period in
the self-similarity vector corresponding to the highest mean
accumulated energy over its integer multiples.

2.2. Noise Pattern Extraction and Speech Enhancement

Once the repeating period T in terms of frames is estimat-
ed, we use it to reveal the underlying repeating background
patterns and to enhance the degraded speech. The basic prin-
ciple is in conformance with the sparse and low-rank frame-
work [5], [6]. The differences lie in that, the non-negative
constraint is imposed on the factorized components and that
the generalized Kullback-Leibler (K-L) divergence, which is
a better alternation of the Euclidean distance for audio pro-
cessing, is used to define the objective function. Furthermore,
the temporal structure of repeating background noise is al-
so considered, utilizing the convolutive non-negative matrix
factorization (CNMF) [9] for modeling the temporal informa-
tion. The objective function is thus defined as follows:

argmin
W,H,S

DKL

(
Y||

T−1∑
t=0

W(t)
t→
H +S

)
+ λ∥S∥1 (2)

where DKL (x||y) = x (log x− logy) + (y − x) and time-
sliced W (t) ∈ Rm×r

≥0 is a set of bases (including r convo-
lutive bases to represent the temporal structures of Y) that

share the same gain matrix H ∈ Rr×n
≥0 .

t→
(·) is the operation

that shifts t columns of the objective matrix to the right while
←t

(·) analogously shifts to the left. S is a non-negative sparse
matrix. The regularization term that controls the sparsity of
decomposition component is defined by ℓ1 norm. We derive
the update algorithms as follows,

W (t)←W (t)⊙

{
Y ⊘

(
T−1∑
t=0

W (t)
t→
H + S

)}
t→
H

T

1 ·
t→
H

T
(3)

H← H⊙

W(t)
T

←t

Y ⊘

 ←t[
T−1∑
t=0

W (t)
t→
H

]
+
←t

S




W(t)
T · 1

(4)

S← S⊙ Y

(λ+ 1) ·
(
S+

T−1∑
t=0

W (t)
t→
H

) (5)

where ⊙ and ⊘ denote the element-wised matrix multiplica-
tion and division, respectively. Sparsity parameter λ can be
viewed as a trade-off between speech distortion and noise re-
duction. We set r to be 1 by considering the repetition proper-
ty. By iteratively updating these matrices, the objective func-
tion finally converges to a local minimum. The convergence
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of the algorithm can be proved in a similar way as in our
previous work [10]. When the algorithm converges, the re-
peating temporal pattern of background noise is obtained (i.e.
W (t) , t ∈ [0, T − 1]) and the clean speech spectrogram S
is also estimated.

2.3. Speech Signal Reconstruction

Given the noise spectrogram reconstruction
T−1∑
t=0

W (t)
t→
H

and the speech spectrogram estimation S, we use the soft
time-frequency mask M, whose element value is in the range
of 0 ∼ 1, to further boost the performance of enhancement,

Ŝ = M⊙Y =
S

T−1∑
t=0

W (t)
t→
H + S

⊙Y (6)

Once the soft time-frequency mask is applied, we subse-
quently reconstruct the time-domain clean speech waveform
using the noisy phase and inverse STFT.

3. RELATIONS TO PRIOR WORK

We compare our method with two previously established ap-
proaches based on the sparse and low-rank framework, RE-
peating Pattern Extraction Technique (REPET) [5] and Sparse
and Low-rank Non-negative Matrix Factorization (SLNMF)
[11]. REPET is a low computational method that uses the
median operation to separate the repeating component from
the noisy spectrogram. To accommodate to the median op-
eration, the repeating period has to be estimated in the first
1/3 of the total length. Our method overcomes this potential
weakness and is feasible once there is repetition. SLNMF
is our preliminary attempt to solve the uninterpretable prob-
lem of the previous sparse and low-rank decomposition. The
objective function of SLNMF is also defined by the gener-
alized K-L divergence which is widely used for the task of
speech enhancement. However, the parameter that controls
the complexity of background noise (i.e. the rank of NMF
used to approximate the low-rank background noise) is pre-
fixed and can’t be changed adaptively on the fly according to
the practical noise. Meanwhile, estimating the rank of back-
ground noise on the presence of speech is a difficult task. The
proposed method gets rid of the rank estimation problem and
utilizes an adaptive method to estimate the temporal span of
the noise pattern (by using the approach presented in section
2.1) as an alternation to model background noises of differen-
t complexity. Since repeating patterns of complicated noises
tend to span over a relative long time, basis that contains more
time-slices is preferred, and vice versa. In this way, the pro-
posed method allows us to deal with the highly time-varying
repeating noises that are difficult to handle by state-of-the-art
methods.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setting

We evaluate the performance of the proposed approaches
for single channel speech enhancement using the NOIZEUS
dataset which contains 30 short English sentences spoken
by three male and three female speakers. The noisy speech
was synthesized by adding clean speech to a variety of noise
signals with signal-to-noise ratios (SNRs) at -5dB, 0dB and
5dB. Noises were drawn from NOISEX-92 database [12],
highly non-stationary noises used in [13] and other internet
resources 1. Four stationary noises (pink, f16, factory 1 and
volvo) and four non-stationary noises (frogs, computer key-
board, helicopter, siren) are included. All signals we used
are resampled at 8 kHz and all the spectrograms are comput-
ed using a Hamming window of 512 samples (64ms) with a
frame shift of 128 points.

4.2. Performance Measures

All the involved methods were evaluated by using two metric-
s, including the widely used signal-to-distortion ratio (SDR)
in BSS-EVAL toolbox [14] and the perceptual evaluation of
the speech quality (PESQ) score. For both metrics, higher val-
ues mean better performance. To overcome the effect of ini-
tialization, the results of proposed method are averaged across
10 different random initializations. Without loss of general-
ity, we report the mean value for each metric on all types of
noises.

4.3. Experimental Results

We compare the proposed method to related works such as
REPET and SLNMF. It is worth to note that, to make the
comparisons fair, the proposed method and REPET share the
same parameters to segment the repeating period. The dif-
ferent lies that our method don’t need to enforce the period
to be shorter than 1/3 of the total length. Similarly, the rank
of SLNMF was fixed to 2 in conformance with the parameter
settings described in [11]. Besides, all STFT parameters were
kept the same with the proposed method. We also compare
our method with several traditional unsupervised methods,
namely Multi-band Spectral Subtraction (MSS) [15], Mini-
mum Mean Square Error (MMSE) [16] and the KLT subspace
algorithm [17].

The results of various algorithms are given in Table 1.
We can easily see that with respect to almost all metrics,
methods based on the sparse and low-rank framework (i.e.
REPET, SLNMF and the proposed method) outperforms tra-
ditional methods. The reason is partly because the sparse and
low-rank decomposition scheme overcomes the stationary
assumption of traditional methods to some extent.

1http : //www.soundsnap.com/
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Methods
Input SNRs

-5dB 0dB 5dB
SDR PESQ SDR PESQ SDR PESQ

REPET -0.29 1.02 4.57 1.52 5.68 1.96
SLNMF 0.16 1.52 5.04 2.03 6.27 2.41

MSS -1.43 1.49 3.16 1.67 5.32 2.35
MMSE -4.64 1.62 4.37 1.84 5.15 2.23

KLT -3.41 1.23 3.64 1.48 5.14 2.01
Proposed 0.71 1.57 5.17 2.16 6.84 2.32

Table 1. Average evaluation from the test data results.

By further inspecting of our experimental results, we can
see that the proposed method performs almost best among the
algorithms using the sparse and low-rank framework. This
can be explained as the adaptation strategy provides a more
flexible model than SLNMF when dealing with unknown
background noise. Besides, the non-negative constraint based
model may serve as a more reasonable alternation compared
with the median operation used by REPET, though more
computational load is introduced.
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Fig. 2. Example decomposition. The top left panel shows
the spectrogram of speech mixed “siren” at 0dB. The middle
left and bottom left panel shows the spectrogram of separated
speech and background noise respectively. The right panel
gives the non-negative convolutive basis estimated from the
background noise in an adaptive way.

For better illustration, we present an intuitive experiment,
as was presented in Figure 2, to show the efficiency of the
proposed method.

From Figure 2 (a), we can see that the speech signal is
corrupted by “siren”. It is obvious to see that the spectrogram
of “siren” is not stationary and we can also observe a large
part of overlapping between the speech and “siren” spectro-

Metrics Methods
REPET SLNMF Proposed

SDR 3.49 3.69 4.71
PESQ 2.12 2.23 2.34

Table 2. Experimental results when dealing with “siren”.

gram in both the low-frequency and the high-frequency com-
ponents. Hence, it is a challenging task to separate speech
directly from the noisy observation when we know nothing in
advance about the speaker identity or the spectrogram struc-
ture of “siren”.

The proposed method treats “siren” as a kind of unknown
repeating background noise whose pattern spans over a cer-
tain period of time and we use the autocorrelation technique
to detect the period length in terms of frames. Subsequently,
the estimated length is used as the number of time-slices of
convolutive basis of CNMF to capture the temporal informa-
tion of background noises. This can be viewed as alternation
of the global low-rank approximation. We use the derived
algorithms to iteratively estimate the underlying background
noise and speech. Once the algorithm converges, the repeat-
ing pattern of background noise is estimated as is shown in
the Figure. 2 (d). We can easily observe that both the length
of pattern and the estimated convolutive basis match well with
basic temporal spectrogram structure of “siren”. Moreover, it
is easy to see that the background noise and the foreground
speech are largely separated as were presented in Figure. 2
(b) and (c).

We also present the performance on speech enhancemen-
t with “siren” noise and compare them with related work-
s. These results demonstrated the advantage of the proposed
method when dealing with background noise possessing the
temporal repeating structures.

5. CONCLUSION

In this paper, an unsupervised single-channel speech en-
hancement method that can adaptively estimate the unknown
repeating temporal patterns was proposed and evaluated. The
proposed method introduces the non-negative temporal re-
peating patterns to the sparse and low-rank framework. The
proposed method overcomes the problem of choosing pa-
rameters beforehand and can adaptively adjust to cope with
various noise inferences without any prior training. Besides,
by taking the advantage of non-negative model, potential
repetitive temporal spectral regularities underlying in the
noisy speech can easily be discovered. Experimental results
showed that the proposed method performs better than tradi-
tional enhancement method as well as competitive methods
such as REPET and SLNMF.
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