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ABSTRACT

This paper proposes an extension of non-negative matrix factor-
ization (NMF), which combines the shifted NMF model with the
source-filter model. Shifted NMF was proposed as a powerful ap-
proach for monaural source separation and multiple fundamental fre-
quency (F0) estimation, which is particularly unique in that it takes
account of the constant inter-harmonic spacings of a harmonic struc-
ture in log-frequency representations and uses a shifted copy of a
spectrum template to represent the spectra of differentF0s. However,
for those sounds that follow the source-filter model, this assumption
does not hold in reality, since the filter spectra are usually invariant
underF0 changes. A more reasonable way to represent the spec-
trum of a differentF0 is to use a shifted copy of a harmonic struc-
ture template as the excitation spectrum and keep the filter spectrum
fixed. Thus, we can describe the spectrogram of a mixture signal
as the sum of the products between the shifted copies of excitation
spectrum templates and filter spectrum templates. Furthermore, the
time course of filter spectra represents the dynamics of the timbre,
which is important for characterizing the feature of an instrument
sound. Thus, we further incorporate the non-negative matrix fac-
tor deconvolution (NMFD) model into the above model to describe
the filter spectrogram. We derive a computationally efficient and
convergence-guaranteed algorithm for estimating the unknown pa-
rameters of the constructed model based on the auxiliary function
approach. Experimental results revealed that the proposed method
outperformed shifted NMF in terms of the source separation accu-
racy.

Index Terms— Audio source separation, Shifted non-negative
matrix factorization, Shift-invariant probabilistic latent component
analysis, Source-filter theory

1. INTRODUCTION

One major approach to monaural source separation involves apply-
ing non-negative matrix factorization (NMF) to an observed magni-
tude (or power) spectrogram interpreted as a non-negative matrix [1].
While many variants and extensions of NMF have been applied to
spectrograms with linear frequency resolution given by the short-
time Fourier transform (STFT), spectrograms with log-frequency
resolution obtained with the continuous wavelet transform (CWT)
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Fig. 1: Two spectra of clarinet sounds at different pitches.

are particularly well suited to music data in the sense that the fun-
damental frequencies (F0s) of the tones in music are geometrically
spaced [2–7]. In particular, shifted NMF [2], also known as the
shift-invariant probabilistic latent component analysis (PLCA) [3],
has proved successful for monaural source separation and multiple
F0 estimation tasks [8–10]. The uniqueness of this method lies in
that it takes account of the constant inter-harmonic spacings of a
harmonic structure in log-frequency representations and uses shifted
copies of a spectrum template to represent the spectra of different
F0s where the shape of each spectrum template is assumed to be as-
sociated with an individual instrument. It should be noted that this
idea was first introduced in [11, 12] to develop a method for multi-
ple F0 estimation. However, the above assumption does not hold in
real situations. Fig. 1 shows two examples of the spectra produced
by the same instrument with differentF0s. As Fig. 1 shows, the rel-
ative energies of the harmonic partials of the two spectra appear to
be completely different, so that it is difficult to represent them only
with a single template. To address this mismatch, previous work pro-
posed using multiple templates to represent the spectra of the same
instrument [2,8–10].

To construct a more reasonable model, we focus on the fact that
the generating processes of many instrument sounds can be ex-
plained fairly well by the source-filter theory. Specifically, we as-
sume that the spectrum of an instrument sound is given by the prod-
uct of the excitation and filter spectra, where the “excitation” source
represents a vibrating object such as a violin string and “filter” refers
to the resonance structure of the instrument body, which is usually
invariant underF0 changes. While most of the NMF variants in-
corporating the source-filter model such as [13–17] were designed
to model STFT spectrograms, we consider modeling CWT spectro-
grams so as to utilize the shift-invariant property of the excitation
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spectrum. We can thus describe the spectrum of each instrument at
a particular time as the product of a shifted copy of an excitation
spectrum template and a filter spectrum.

As regards the filter spectrum, if it can be assumed to be constant
over time, we can use a single spectrum template for each instru-
ment. However, for some instruments such as a singing voice, the
time course of the filter spectrum represents the dynamics of the
timbre, which is important for characterizing the feature of an in-
strument. We thus consider it reasonable to represent the filter spec-
trogram using a short-range spectrogram rather than a single-frame
spectrum as the template. This can be achieved by introducing the
convolutive NMF model [18] to express the filter spectrogram of
each instrument.

In summary, this paper proposes modeling the CWT spectrogram
of a polyphonic music as the sum of components each described by
the product of the excitation and filter spectrogram, where the ex-
citation and filter spectrograms are respectively expressed using the
shifted NMF model and the convolutive NMF model. We further de-
rive a convergence-guaranteed iterative algorithm for minimizing the
difference between an observed spectrogram and the present model
based on the auxiliary function approach [19,20].

2. SHIFTED AND CONVOLUTIVE SOURCE-FILTER
NON-NEGATIVE MATRIX FACTORIZATION

2.1. Spectrogram Model

Let us denote the indices of log-frequency and time byl = 0, . . . , L−
1 andm = 0, . . . ,M − 1, respectively. A spectrogram of an audio
signal that follows the source-filter model can be described as the
product of an excitation spectrogram and a filter spectrogram. By us-
ing the fact that the inter-harmonic spacings of a harmonic structure
are constant in the log-frequency domain, we use a shifted copy of
an excitation spectrum template to represent the excitation spectrum
of eachF0. The excitation spectrogram̃X(ex)

l,m,k ≥ 0 of source excita-
tion k(= 0, · · · ,K −1) is modeled as the convolution of an excitation
spectrum templateSk,l ≥ 0 and time-varying gainsU (ex)

k,p,m ≥ 0, i.e.

X̃(ex)
l,m,k =

∑
p∈P Sk,l−pU

(ex)
k,p,m, wherep is the frequency shift index and

P is the set of possible frequency shifts. By abuse of notation, we
understand thatSk,l−p = 0 unless 0≤ l − p ≤ L − 1.

On the other hand, we describe the filter spectrogram in a sim-
ilar manner to NMFD [18] and NMF-2D [4] to capture the dy-
namics of the timbre, which is important for characterizing the fea-
ture of an instrument sound. The spectrogramX̃(filt)

l,m,r ≥ 0 of filter
r(= 0, · · · ,R− 1) is represented by a time convolution of a short-
range spectrogramFr,l,τ ≥ 0 with time-varying gainsU (filt)

r,m ≥ 0,

i.e. X̃(filt)
l,m,r =

∑M(tap)−1
τ=0 Fr,l,τU

(filt)
r,m−τ, whereτ = 0, · · · ,M(tap) − 1 is the

time shift index andM(tap) is the tap size of the short-range spectro-
grams. By abuse of notation, we understand thatU (filt)

r,m−τ = 0 unless
0 ≤ m− τ ≤ M − 1.

As we want the magnitude spectra of filters to be smooth and
non-negative in the log-frequency domain, we parameterizeFr,l,τ by
N envelope kernelsGl,n ≥ 0 and their mixture weightsWr,n,τ ≥ 0 that
satisfies

∑
n,τWr,n,τ = 1:

Fr,l,τ =
∑

n

Wr,n,τGl,n, (1)

Gl,n :=
1
√

2πν2
e−

(ωl−ρn)2

2ν2 (2)

wheren = 0, · · · ,N − 1 is the index of envelope kernel andωl ∈
(0, π] is the normalized angular frequency corresponding to thelth

log-frequency. The kernelGl,n for n ≥ 1 is identical to a normal
distribution of a normalized angular frequency with meanρn and
varianceν2.

Multiple excitation and filter spectra can be used for an instru-
ment to describe complex spectral changes, but we hereafter as-
sign an excitation spectrum and a filter spectrum to each instrument
for the simplicity. By puttingUk,r,p,m−τ = U (ex)

k,p,mU (filt)
k,r,p,m−τ and treat-

ing Uk,r,p,m−τ itself as a parameter, the spectrogram of an instrument
sound associated with source excitationk and filterr can be written
as

X̃l,m,k,r =
∑
p,τ

Fr,l,τSk,l−pUk,r,p,m−τ. (3)

Assuming the additivity of magnitude spectrograms as with conven-
tional NMFs, the observed spectrogram can be represented as

Xl,m =
∑
k,r

X̃l,m,k,r . (4)

To avoid the indeterminacy in scaling, we put
∑

l Sk,l = 1 for all k.
Although a model similar to the above has been mentioned in

[21], the temporal dynamics was not incorporated into the source-
filter model in the literature. Any experimental evaluation was not
given in the literature and the incorporation of the source-filter model
into shifted NMF has yet been validated. We will thus confirm the
efficacy of the incorporation of the source-filter model in Sec. 4.

2.2. Formulation

For a given magnitude spectrogramY := {Yl,m}l,m, we would like
to find the parametersS := {Sk,p}k,p, W := {Wr,n,τ}r,n,τ and U :=
{Uk,r,l,m}k,r,l,m of the proposed model such that minimizes

L∗(S,W,U) =
∑
l,m

D∗(Yl,m||Xl,m) + R∗(U). (5)

The first term of Eq. (5) is a goodness-of-fit measure betweenY and
X := {Xl,m}l,m. How to define the measure is very important since
it corresponds to an assumption to the statistical nature of observed
data. If we defineDI as the generalized Kullback-Leibler divergence
(a.k.a I divergence), it implicitly assumes thatYl,m follows a Poisson
distribution with meanXl,m:

DI(Yl,m||Xl,m) = Yl,m ln
Yl,m

Xl,m
− Yl,m + Xl,m. (6)

From this fact, it is known that minimizing
∑

l,m DI(Yl,m||Xl,m) with re-
spect toXl,m amounts to the maximum likelihood estimation ofXl,m.
This measure is frequently used in conventional NMF algorithms
and has been confirmed to work well for audio source separation
empirically. Another commonly-used measure is the Itakura-Saito
divergenceDIS:

DIS(Y2
l,m||Xl,m) =

Y2
l,m

Xl,m
− ln

Y2
l,m

Xl,m
− 1. (7)

This corresponds to the assumption that an observed complex spec-
trogram follows a circularly-symmetric complex normal distribution
with mean zero and varianceXl,m, in whichXl,m can be interpreted as
a model of a power spectral density of the observed signal.

The second termR∗(U) is a regularizer forU. In popular and
classical western music, the number of pitches occurred in a musical
piece and the number of times each note is performed are usually
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limited, and so inducing the sparsity ofU would facilitate the source
separation. To reflect it, we can design the regularizer in analogy to
the Bayesian modeling. The conjugate prior of the Poisson distri-
bution is a gamma distribution Gam(x;α, β) ∝ xα−1e−βx and thus we
design the regularizerRI(U) for DI as

RI(U) =
∑

k,r,p,m

{
−(α(I) − 1) lnUk,r,p,m + β

(I)Uk,r,p,m

}
, (8)

whereα(I) > 0 andβ(I) > 0 are associated with the shape and rate
parameters of a gamma distribution, respectively. Similarly, the con-
jugate prior of a circularly-symmetric complex normal distribution
with known mean and unknown variance is an inverse gamma distri-
bution InvGam(x;α, β) ∝ x−α−1e−β/x, and we design the regularizer
for DIS as

RIS(U) =
∑

k,r,p,m

{
(α(IS) + 1) lnUk,r,p,m +

β(IS)

Uk,r,p,m

}
, (9)

whereα(IS) > 0 andβ(IS) > 0 are associated with the shape and scale
parameters of an inverse gamma distribution, respectively. The less
α(I) (α(IS)), the more sparseU tends to become.

3. PARAMETER ESTIMATION ALGORITHMS BASED ON
AUXILIARY FUNCTION APPROACH

We first derive a parameter estimation algorithm for the I diver-
gence. SinceLI(S,W,U) involves summations overk, r, p, τ and
n in the logarithmic function, the current minimization problem is
difficult to solve analytically. However, we can develop a com-
putationally efficient algorithm for finding a locally optimal solu-
tion based on the auxiliary function approach [19, 20, 22]. The first
step to apply the auxiliary function approach, is to define an up-
per bound function for the objective functionL(S,W,U), arranged
as L+(S,W,U,Λ), such thatL(S,W,U) = minΛL+(S,W,U,Λ).
We call Λ an auxiliary variable andL+(S,W,U,Λ) an auxiliary
function. If we can constructL+(S,W,U,Λ), L(S,W,U) is non-
increasing under the updates{S,W,U} ← argmin

S,W,U
L+(S,W,U,Λ) and

Λ← argmin
Λ

L+(S,W,U,Λ).

Since the logarithmic function is a concave function, we can ob-
tain an upper bound function by invoking the Jensen’s inequality:

−Yl,m ln Xl,m ≤ − Yl,m

∑
k,r,p,τ,n

λl,m,k,r,p,τ,n

(
ln Sk,l−p + ln Wr,n,τ

+ ln Gl,n + ln Uk,r,p,m−τ − ln λl,m,k,r,p,τ,n

)
(10)

where λl,m,k,r,p,τ,n ≥ 0 is an auxiliary variable such that∑
k,r,p,τ,n λl,m,k,r,p,τ,n = 1 for all l and m. The equality holds if and

only if

λl,m,k,r,p,τ,n =
Sk,l−pWr,n,τGl,nUk,r,p,m−τ

Xl,m
. (11)

The auxiliary function can thus be written as

L+I (S,W,U,Λ)=
c
−

∑
l,m

Yl,m

∑
k,r,p,τ,n

λl,m,k,r,p,τ,n

(
ln Sk,l−p + ln Wr,n,τ

+ ln Uk,r,p,m−τ − ln λl,m,k,r,p,τ,n

)
+

∑
l,m

Xl,m

−
∑

k,r,p,m

{
(α(I) − 1) lnUk,r,p,m − β(I)Uk,r,p,m

}
(12)

where =
c

denotes the equality up to constant terms andΛ :=

{λl,m,k,r,p,τ,n}l,m,k,r,p,τ,n. By setting the partial derivatives of
L+(S,W,U,Λ) with respect toS, W andU at zeros and substitut-
ing Eq. (11) intoΛ, we can derive the following update equations:

Sk,l′ ←Sk,l′

∑
l,m

Yl,m

Xl,m

∑
r,τ Fr,l,τUk,r,l−l′ ,m−τ∑

l,m,r,τ Fr,l,τUk,r,l−l′ ,m−τ
, (13)

Wr,n,τ ←Wr,n,τ

∑
l,m

Yl,m

Xl,m

∑
p,k Gl,nSk,l−pUk,r,p,m−τ∑

l,m,p,k Gl,nSk,l−pUk,r,p,m−τ
, (14)

Uk,r,p,m′ ←

∑
l,m

Yl,m

Xl,m

∑
p,k Fr,l,m−m′Sk,l−pUk,r,p,m′ + α

(I) − 1∑
l,m,p,k Fr,l,m−m′Sk,l−p + β(I)

, (15)

The update rules ofS andW are followed by normalization such that∑
l Sk,l = 1 for all k and

∑
n,τWr,n,τ = 1 for all r. It is important to

note that once the initial values ofW andS are set to be non-negative,
the multiplicative update equations ensures the non-negativity of the
entries ofW andS. Since the non-negativity ofU does not hold,
we can ensure it by simply performingUk,r,p,m ← max{0,Uk,r,p,m}
at each update. One may think that the update equations contain
time-consuming convolutions and correlations and would require a
long computation time. However, we can invoke the fast Fourier
transform (FFT) to calculate the convolutions and correlations, and
they are not time-consuming in practice.

Similarly to the above, we can construct an auxiliary function for
the IS divergence as with [23]. We here omit details of the deriva-
tion of an auxiliary function due to limitations of space. Update
equations can be derived as

Sk,l′ ←Sk,l′

√√√√√√√√√√√√√∑
l,m,r,τ

Y2
l,m

X2
l,m

Fr,l,τUk,r,p,m

∑
l,m,r,τ

Fr,l,τUk,r,p,m

Xl,m

, (16)

Wr,n,τ ←Wr,n,τ

√√√√√√√√√√√√√∑
l,m,k,p

Y2
l,m

X2
l,m

Sk,l−pGl,nUk,r,p,m

∑
l,m,k,p

Sk,l−pGl,nUk,r,p,m

Xl,m

, (17)

Uk,r,p,m′ =
Ak,r,p,m′√(

α(IS) + 1
2

)2

+ Bk,r,p,m′Ak,r,p,m′ +
α(IS) + 1

2

(18)

where

Ak,r,p,m′ =
∑
l,m

Y2
l,m

X2
l,m

Fr,l,m−m′Sk,l−pUk,r,p,m′2 + β
(IS). (19)

Bk,r,p,m′ =
∑
l,m

Sk,l−pFr,l,m−m′

Xl,m
. (20)

4. EXPERIMENTS

To evaluate the proposed algorithms, we conducted a supervised
source separation experiment. For the convenience, we call the pro-
posed algorithm with the I divergence criterion (the IS divergence
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Table 1: Average SDR improvements, SIR improvements and
SARs with standard errors obtained with the proposed algorithms (I-
SNMFwSFand IS-SNMFwSF) and the shifted NMFs (I-SNMF and
IS-SNMF).

Algorithm
SDR SIR

SARs
improvements improvements

I-SNMFwSF
(0.6, 1.0× 10−10)

6.01± 0.58 11.06± 1.09 3.91± 0.64

IS-SNMFwSF
(1.0, 0.6)

4.77± 0.29 8.98± 0.40 3.46± 0.50

I-SNMF
(1.0, 0.4)

3.96± 0.44 9.58± 0.69 1.79± 0.85

IS-SNMF
(0.4, 1.0)

2.81± 0.51 6.00± 0.61 4.09± 0.94

criterion) I-SNMFwSF(IS-SNMFwSF, respectively). For compari-
son, we employed shifted NMF with the I divergence criterion (I-
SNMF) and that with the IS divergence criterion (IS-SNMF). While
the original shifted NMF [2] does not contain any terms inducing the
sparsity of parameters, we found thatR∗(U) improved SDRs in the
experiment and we here usedR∗(U).

The experimental data was the Bach10 dataset [24], which con-
sists of audio recordings of ten four-part chorales by J. S. Bach. Each
recording is a mixture of violin, clarinet saxophone and bassoon per-
formances, which correspond to the soprano, alto, tenor and bass
parts of each musical piece, respectively. Audio recordings of indi-
vidual parts are also contained in the dataset. All recordings were
monaural and downsampled to 16 kHz. Magnitude spectrograms
were computed with the fast approximate CWT algorithm [25, 26].
The center frequencies ranged from 27.5 to 7902 Hz with 100/3 cent
interval and the log-normal wavelet [27] was used as an analyzing
wavelet. The wavelet has a Gaussian shape with a common variance
in the log-frequency domain, and we set a parameter corresponding
to the standard deviation of the Gaussian as a one fifth of a semitone
interval.

We first trainedS andW of the proposed models and basis spec-
tra of the shifted NMFs with the audio recordings of individual
parts of the five musical pieces (training data), and then performed
source separation on the audio recordings of the other five musi-
cal pieces (test data). With the proposed algorithms, a pair of a
source excitation and a filter was trained for each instrument, and
a total of four pairs of a source and a filter were used for the sepa-
ration. With the shifted NMFs, one basis spectrum was assigned to
each instrument and a total of four basis spectra were used for the
separation. For each test data, we designed a soft time-frequency
mask asX̃l,m,k,r/Xl,m to obtain separated audio signals of the sources.
The proposed methods and the shifted NMFs ran for 100 itera-
tions both in the training and test stages. Asα(I) or α(IS), we use
α(train) = 1.0 × 10−10,0.2, 0.4, 0.6,0.8, 1.0 for the training data and
α(test) = 1.0× 10−10,0.2, 0.4,0.6, 0.8, 1.0 for the test data. The other
parameters were set as follows:β(I) = β(IS) = 1.0× 10−10, M(tap) = 1,
N = 140,ν = π/(2N − 2) andρn = πn/(N − 1) for n = 0, · · · ,N − 1.

Table 1 shows SDR improvements, SIR improvements and SARs
obtained with all algorithms for all data. SDRs, SIRs and SARs were
computed with the BSSEval toolbox [28]. The pairs of two values
below the algorithm names are (α(train), α(test)), which provided the
highest average SDR improvement for each algorithm. These results
show that the incorporation of the source-filter model improves the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

SNMF
20 40 60 80 100 120 140 160 180 200

S
D

R
 i

m
p
ro

v
em

en
t 

[d
B

]

Violin
Saxophone

Clarinet
Bassoon

Fig. 2: Average SDR improvements and standard errors obtained
with the proposed algorithm (I-SNMFwSF) and I-SNMF for each
musical instrument. “SNMF” corresponds toI-SNMF.

source separation accuracy in the CWT domain.
We also conducted an experiment to examine the effect of N of

the proposed algorithms. Fig. 2 displays average SDR improvements
and standard errors obtained withI-SNMFwSFandI-SNMFfor indi-
vidual musical instruments, where each algorithm ran with the same
(α(train), α(test)) as in the above.I-SNMFwSFwith 100 ≤ N ≤ 160
provided significantly higher SDR improvements for all musical in-
struments compared toI-SNMF. We found that the bestN was dif-
ferent for each musical instrument, and so exploring the bestNs for
other musical instruments and classifying them may be required for
practical use.

5. CONCLUSION

This paper has developed a new source separation method by in-
corporating the source-filter model into shifted NMF. With the pro-
posed model, the observed spectrogram is represented by a product
of excitation and filter spectrograms. The excitation spectrogram is
described with shifted NMF to exploit the constant inter-harmonic
spacings of a harmonic structure in the log-frequency domain, and
the filter spectrogram is modeled by NMFD to represent temporal
dynamics of timbre. We have derived iterative algorithms of estimat-
ing parameters for the objective functions using the I divergence and
IS divergence criterions based on the auxiliary function approach.
We have experimentally confirmed that the proposed algorithms out-
performed shifted NMFs in the accuracy of source separation. In fu-
ture, we will examine the effect of settingM(tap) > 1 to the source
separation accuracy.
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