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ABSTRACT signal processing, text information processing, audioalig
processing, and music information retrieval [6], [19].

Non-negative matrix factorization (NMF) is an unsuperdise Most of the NMF-based source separation approaches

technique to represents a nonnegative data matrix witha pro . . L
. . . - ompute the basis matrW from a set of given training data
uct of nonnegative basis and encoding matrices. The encod- o o .
and then it is used for specific source separation [6]- [14].

ing matrix for the training phase contains information oe th The encoding matrix for the training dat™*, is usually

pattern of how each basis vector is utilized. The hismgranr]emoved althouah it has some useful information on how
for each row of this matrix corresponding to a specific basis 9

turned out to be sparse, while the level of sparsity varigd si often each basis was utilized. In [8], a multivariate Gaassi

nificantly in each basis. In this paper, the distribution acle d|§tr|but|on IS appllgd to model the dlstr|but.|on. of the Jog
. ) ) arithm of the encoding vector, and the log-likelihood of the
component of an encoding vector is modeled as an indepen- . ; S .
. o .. current estimate for the encoding vector is incorporatéden
dent exponential or gamma distribution, and a new objectiveé

. . - . objective function. However, our analysis BH™*" revealed
function with the log-likelihood of the current encodingeve . . . .
. - . that each row of this matrix was also highly sparse, which
tor is proposed. Experimental results on audio source sepa-

ration demonstrate that the utilization of the prior knatge implies the lognormal distribution may not be the best form

) . I of prior knowledge. Another noteworthy observation was
on the encoding matrix based on sparse statistical models c . : o .
A at the level of sparsity widely varies in each basis. It may
enhance the source separation performance.

suggest that each component in the encoding vector should
Index Terms— Nonnegative matrix factorization, encod- contribute to the sparsity-related penalty differently.

ing vectors, statistical model, source separation. In this paper, we propose the penalty terms based on the
prior knowledge orH in the separation phase for NMF-based
1. INTRODUCTION source separation. The new statistical models for the encod

ing vector are proposed based on the analysis of the distri-

Many approaches have been proposed for single chann'é‘i‘tion_ of_the_ encoding matrix elements in the tr_aining datg.
source separation including independent component analn€ distribution of each component of an encoding vector is
ysis, sparse decomposition, principal component analysi§0deled as an independent exponential or gamma distribu-
and singular value decomposition [1]- [5]. Among them, thelion of which the parameters are estimated fi#i*'". The
methods based on nonnegative matrix factorization (NMF)°g-likelihood of H derived from these models is adopted in
have shown impressive results [6]- [17]. NMF basically ap_the objective function in the separation stage. The aditio
proximates a nonnegative data matixwith a product of log-likelihood term derived from the exponential distriioun
nonnegative basis and encoding matridds and H, i.e., turns outto be a weightefl; norm penalty. Experimental

V ~ WH [18]. Since botiW andH are nonnegative, NMF results on audio source separation show that the proposed
often leads to a part-based representation of the datahwhién€thod can enhance the separation performance in terms of

may be desirable in many areas including image or visudl'® Perceptual evaluation of speech quality (PESQ) [20] and
the signal-to-distortion ratio (SDR) [21].

This research was supported in part by the National Resezwan-
dation of Koera (NRF) grant funded by the Korea governmenE®W)
(NRF-2015R1A2A1A15054343), and by the MSIP(Ministry of&ee, ICT 2. NMF-BASED SPEECH ENHANCEMENT
and Future Planning), Korea, under the ITRC(Informationhf®logy Re-
search Center) support program (IITP-2015-H8501-15-18Lfervised by . . . .
the IITP(Institute for Information & communications Tedtogy Promo- ~NMF is mainly applied on the speech magnitude or power
tion). spectrogram to obtain a set of basis vectors to represent a
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speech signal. In our notations, an input nonnegative rmatri i
Ve RY*N is approximated by the product of a basis matrix =

We RY*" and an encoding matrie RV (V ~ WH) - =
where M and N denote the number of frequency bins and
short-time frames, respectively, ands the number of ba-
sis vectors. We apply NMF on the magnitude spectrogram o
speech and noise. Hence, speech basis mupe RY "™~
is trained using a clean speech DB, and noise basis matri®
W, € Rf”” is obtained from a noise DB, where and
r,, indicate the number of speech and noise basis vectors, r¢ o 0s Bk 15 5 o T3 3 3 2
spectively. In order to process an input with noisy magretud

spectrum, a joint basis matW = [W, W, |¢ ]fo(”“”)

is first constructed. In this paper, the Kullback-Leiblerefi
gence (KLD) and multiplicative update rules (MuR) are use
as a distance measure and an optimization method, respec-

tively. The update rules for the encoding and basis matriceons from (2). The gain function is given as
are as following [18]:

0

Fig. 1. The histograms of some rowsHZ " corresponding
010 the most frequently and rarely used basis vectors.

N . 9
W wi wor HY = 9(t)|5i)||1\7(t)2 @

The STFT coefficients of the speech signal attttie frame
where® and £ denote the element-wise multiplication and are now obtained according Bl = G QY (t).
division of matrices, and subscriptlenotes either speech or
noise, andv; e RQXM is the magnitude spectrogram of the

training signal whereV; is the total number of short-time 3. NMF-BASED SOURCE SEPARATION UTILIZING

frames in the training signal for souréeand1 is a matrix PRIOR KNOWLEDGE ON ENCODING VECTOR
of suitable size with all elements equal to onH; and W;

are obtained by iteratively applying the update rules (tpfo  Though most of the previous works only use the trained basis
fixed number of iterations. matrix during the source separation phase, the encoding ma-

In the speech enhancement stage, speech and noise Mg obtained for the training data is regarded to posse®imp
nitude spectra are first approximated using NMF, and then gnt information as to how frequently each basis is utilied
spectral gain is determined to obtain the enhanced spegch steconstruct the clean source signals. In the training phoee
nal. This is further explained in the following. L&i(t) € Wge was andH% "¢ RT;‘XNS are obtained through the
C¥>1, §(t)e CM1, andN(t)e CM! denote the short- NMF analysis of the clean target signal daty " ¢ RN
time Fourier tran_sforrr_l (STFT) coeﬁ|c_|ents of the noisyatie while Wye foq-n and Hip@in RTXN" are computed
speech, and noise signals, respectively, for tthie frame. o train — MX Ny, .

rom the noise signal dafd§j " e R . In[8], the distri-

We assume an additive noise model, which is expressed i fthe | ithm of the el ts of di N
Y (t) = S(t)+ N(t). The input vector to the NMF analysis is . ution otthe logarithm of the elements of an encoding vector

the magnitude spectrum of the noisy signal in the presemzttiml.S mo?elre]q :?dlmensmr:al multlvartllz;l;e tGgl;SS'T“?IS;r(;bU'
frame, i.e.V (t) = [Y (t)|€ RY*! where|-| denotes element- o 9! WhICh he parameters are estimate e a

train H H
wise absolute value operator. The noisy magnitude spectrumv assuming thals and [y are independent. Based

V(t) is approximated a¥'(t) ~ WH(t), where the basis on this statistical model, the log-likelihood of the curtresti-

matrix W is obtained during the training phase (as expIaineﬂ‘;‘fﬁig;}]u 1;oer dﬂi]r? :ﬁzt gj&i::;bat::g;end f;\oa?;éheAcl)t?ce)Stmethe
above), andH (t) = [H,t)" H,(t)"])"e RS:S)“"“ de- P P . g

4 . ; . utilization of the prior knowledge o brought about perfor-
notes the encoding vector of the noisy signal intttieframe. P 9 g P

e . - ; mance improvement, the method in [8] has a high complex-
With fixed W, H(t) is computed by iterating the left part of ity and the chosen statistical model does not fit to the actual

(1), in which H¢(t) and H,,(¢) are initialized to nonnegative ?gistribution of the data as tHELZ*" or H'7#in In this pa-

randc_)m numbers. Af.ter convergence or a f'X_ed ”“mb‘?f er in order to alleviate this, we propose new statisticatlmo
iterations of the algorlthm, ﬂ_]e speech and noise magnit &ls for the elements off. To analyze the actual histograms
spectra are approximated as: of the row elements oHtS’”’””, we performed the standard
‘g(m = W, H,(t), |N(t)\ = W, H,(t). ) NMF analysis on a database of clean speech magnitude spec-
tra, i.e,VZen = [[Y(1)||Y(2)] - [V (N)[]e RY*N where
We adopt the gain function similar to Wiener filter to enhancey (t)e CM*1 is the2(M — 1)-point STFT of speech at frame
the speech signal, where we use speech and noise approximeand NV is the total number of frames in the training data.
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TIMIT database with a sampling rate @6 kHz was used where; is the rate parameter for the distribution &f;,

for the speech data)/ = 257, and N = 12,728. Fig. and~. is the parameter controlling the trade-off between the
1 shows the histograms corresponding to the two rows ofeconstruction error and the log-likelihood. The MuR with
H*" having the one largest and smalléstnorms. There KLD is now given by

rows roughly correspond to the most frequently and rarely

used basis vectors. The shape of the histograms shows sparse SM WiV

S - . k=1 3% Wi sHy
distributions which can be better approximated by a gamma H; « Hi——3; . 9
or an exponential distribution rather than a lognormalrdist 2 k=1 Wi £ 7eni

bution as used in [8]. Moreover, a wide range of sparsity

level was observed along different bases. The analysis olﬁ is noteworthy that the penalty term in (8) becomes essen-

the H; % for various noise signals also showed similar ten-Ually the same as that of sparse NMF in [19] except that the

dency. weighting by;, which is_ the reciprocal of th@l norm or
Based on these empirical analyses, we propose in thid'€an of the corresponding row B or Hiy*™.

work to prior distribution of each component of the encoding

vector as an independent gamma or exponential distribution 4. EXPERIMENTS

of which the parameters are estimated from the correspond-

ing row of HZ %" or H%". The probability density function

N - DHEPIRE To evaluate the performance of the proposed algorithm, it is
(pdf) of the gamma distribution is given by

applied to audio source separation in which the target signa
h—le—% is speech. The proposed constraints in the separation stage
P(z) = W’ (4)  pased on the prior distribution df modeled by the gamma
and exponential distributions were compared with that thase

wherek, 6, andI'(-) indicate a shape parameter, a scale paon the lognormal distribution anl, norm constraint in terms

rameter, and the gamma function, respectively. Because th the PESQ and and SDR.

correlation coefficients among different components of the  speech samples were chosen from TIMIT database while

encoding vector were found not so significant, we assumeghe noise signals used for the experiments wesks, fac-

that each component of the encoding vector is statistiaally tory1, babble, andmachinegun noises from the NOISEX-92

dependent to avoid heavy computation. The log-likelihootbB. Each signal was sampled 8 kHz, and the Hamming

of the current estimate foi based on the assumed modelwindow and &512-point discrete Fourier transform witt5%

is subtracted from the Original ObjeCtiVe function to forine t Over|ap were app“ed to form a spectrogram_ Training DB for

modified Objective function for the Separation phase asrgiVeSpeech contains df02-second |0ng Speech data Spoken by

by 40 different speakers, while the noise data for training were
r . 117-second long in total for each type of noise which has the
f(H)=D(V |WH) —~, Z[(ki —1)logH; — e—f} (5) same level with speech data. To test the proposed and conven-
i=1 v tional methods32 sentences spoken 139 different speakers
in which the constant term irrelevant &f is ignored. The which weren't included in the training DB were mixed with
MUR with KLD is now modified to the aforementioned four types of noise data which were not

used in the training & dB SNR to construct the test DB. The
MuR was applied with the distance measure of KLD in the
: ©®  NmF analysis, and the numbers of iterations for the training
and test phases wei®0 and 30, respectively, and the each
It is noted thatk; < 1 to match the shape of the distribution number of bases was (rs = r,, = 128).
shown in Fig. 1. In this experiment, the training procedure is implemented
Alternatively, we can employ an exponential distributionas in II.A without any constraint, and various penalty terms
instead of the gamma distribution of which the pdf is given bywere utilized to computé? in the source separation stage
R— >0 - which is then used to enhance the signal as in Il.B. The
flwsn) = ne T Q) penalty terms used in the experiments were:
wherer) is the rate parameter, which is the reciprocal of thesstandard: no constraint as in (1)
mean. It is noted that it is a special case of the gamma distreL1: L1 norm of i in (9) with n; = 1
bution withk = 1. As in the case of the gamma distribution, elognormal: the negative log-likelihood ofogH assuming
the log-likelihood of H is combined with the KLD between that [/ follows lognormal distribution as in [8] wherkg A
V andW H so that the final objective function becomes  denotes element-wise logarithm.
. egamma: the negative log-likelihood off in which the
_ 7 PDF of H is modeled as an independent gamma distribution,
J(H) =DV | WH) + e ) _(mH:) ® which is shown in (5).

ZM Wi, Vi
k=1 Z;:l Wy rHy

H; «+ H;
% [p—ys k.
k=1 Wk,i +'7g(1H]j7 + 9%)

i=1
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Table 1. Source separation performance when the power level
of the test DB differs from that of the training DB.

<average score>
28 standard: 1.968
L1 H: 1964

lognormal: 2.004
gamma: 2.088
exponential: 2.265

26

distribution oPtlleev%ls?\éea{v PESQ| SDR

standard original 1.9681{5.5763
original 2.0043 6.2264
g g lognormal +10dB 1.99046.1562

: 2 ] -10dB 2.0052/6.0510

v 1 HHI - H original || 2.08786.9930
16 =B 2 HHII gamma +10dB 2.1717,7.4682
factoryl F-16 babble machine -10dB 19320 40748

(a) The PESQ scores original || 2.2648 7.9071

16 exponential +10dB 2.24157.9153
ichiisitg -10dB 2.21887.8422

14 standard: 5.576 &
L1 H: 5618 =
lognormal: 6.226 =
12 gamma: 6.993 : 3
exponential 7.507 e can be seen from (6) that ond& has a very small value,

24

22

10 . .
it becomes smaller very quickly and cannot reach the global
optimum. Also, it is noted that thegnormal required heavy
E computation whem andr,, are large due to the multivariate
: = modeling, while the proposed approaches were processed
4 I3 ; |3 much faster. One potential issue for the prior model-based
2 HHI : HHI 2 m_.@ ; approaches is that the performance of the systems is ques-
factory1 F-16 babble  machine tionable if the power level of the test data is significantly
@standard @L1_H @ lognormal M gamma B exponentia different from that of the training data based on which the
(b) SDRs model parameters are estimated. The effect of the power
level mismatch may not be crucial since the KLD term would
Fig. 2. Source separation performance of NMF methods withegulate the difference betwedi and WH and the effect
various prior models off (r; = r,, = 128). of the power mismatch have impact on all the elementiof
To verify this, another set of experiments have been carried
out for the test data which are wittd dB higher or10 dB
lower power level. Table 1 summarizes the source separation
erformance with these data and the original data with the
L ) matched level, when the same parameters to Fig. 2 were
L1 is included since the penalty term based on the ®Xused. The proposed method based on the exponential model

poneTnhtlaI d|str|but|onfresEltsl in the Wle'g:ltdd horm .OT di resulted to be very robust to the level mismatch. As for the
H' ne parameters o_rt e lognormal and exponentia ISéystem based on the gamma distribution, the performance
tributions were determined by thest and2nd order mo-

- : increased as the input level got higher, possibly because it
ments of HZ*" and HY*", while those for the gamma P go: g P y

2 . > o was less likely to fell into local optima near the small vaue
@stnl_ounon were achieved by the maximum likelihood €Sof H, if the input level was higher.
timation through the MATLAB function “fitdist”. The pa-
rameters for each penalty term were chosen to maximize
the source separation performance, which fall in the ranges 5. CONCLUSION
AL1€ [0.001,1], Yiognormar€ [0.001,0.3], v,€ [0.01,0.04]
and~.€ [0.005,0.02]. Fig. 2 shows the performance of the In this paper, to utilize the statistical information on e
source separation when the input SNR wadB. For both  coding vector obtained during the training, we propose an
of the cases, the penalty terms based on sparse distributioadditional penalty term in the test phase which is the nega-
outperformed other penalty terms. One interesting observaive log-likelihood of the encoding vector based on a sparse
tion is that the system based on the exponential distributiodistribution such as an exponential or a gamma distribution
performed better than that based on the gamma distributioBxperimental results show that the empirical distributidn
although the exponential pdf is a special case of the gamnmeach encoding vector component was actually sparse, and the
pdf. One possible interpretation is that the objective fiomc  proposed methods can enhance the source separation perfor-
in (5) is not convex ifk; < 1, in contrast to the exponen- mance in terms of PESQ and SDR when applied the audio
tial modeling which leads to a convex objective function. Itsource separation task in which the target signal is speech.

8

6

eexponential: the negative log-likelihood off where the dis-
tribution for H is assumed to be an independent exponenti
distribution, which is given in (8).
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