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ABSTRACT

Non-negative matrix factorization (NMF) is an unsupervised
technique to represents a nonnegative data matrix with a prod-
uct of nonnegative basis and encoding matrices. The encod-
ing matrix for the training phase contains information on the
pattern of how each basis vector is utilized. The histogram
for each row of this matrix corresponding to a specific basis
turned out to be sparse, while the level of sparsity varied sig-
nificantly in each basis. In this paper, the distribution of each
component of an encoding vector is modeled as an indepen-
dent exponential or gamma distribution, and a new objective
function with the log-likelihood of the current encoding vec-
tor is proposed. Experimental results on audio source sepa-
ration demonstrate that the utilization of the prior knowledge
on the encoding matrix based on sparse statistical models can
enhance the source separation performance.

Index Terms— Nonnegative matrix factorization, encod-
ing vectors, statistical model, source separation.

1. INTRODUCTION

Many approaches have been proposed for single channel
source separation including independent component anal-
ysis, sparse decomposition, principal component analysis,
and singular value decomposition [1]- [5]. Among them, the
methods based on nonnegative matrix factorization (NMF)
have shown impressive results [6]- [17]. NMF basically ap-
proximates a nonnegative data matrixV with a product of
nonnegative basis and encoding matricesW and H, i.e.,
V ≈WH [18]. Since bothW andH are nonnegative, NMF
often leads to a part-based representation of the data, which
may be desirable in many areas including image or visual
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signal processing, text information processing, audio signal
processing, and music information retrieval [6], [19].

Most of the NMF-based source separation approaches
compute the basis matrixW from a set of given training data
and then it is used for specific source separation [6]- [14].
The encoding matrix for the training data,H

train, is usually
removed although it has some useful information on how
often each basis was utilized. In [8], a multivariate Gaussian
distribution is applied to model the distribution of the log-
arithm of the encoding vector, and the log-likelihood of the
current estimate for the encoding vector is incorporated inthe
objective function. However, our analysis onHtrain revealed
that each row of this matrix was also highly sparse, which
implies the lognormal distribution may not be the best form
of prior knowledge. Another noteworthy observation was
that the level of sparsity widely varies in each basis. It may
suggest that each component in the encoding vector should
contribute to the sparsity-related penalty differently.

In this paper, we propose the penalty terms based on the
prior knowledge onH in the separation phase for NMF-based
source separation. The new statistical models for the encod-
ing vector are proposed based on the analysis of the distri-
bution of the encoding matrix elements in the training data.
The distribution of each component of an encoding vector is
modeled as an independent exponential or gamma distribu-
tion of which the parameters are estimated fromH

train. The
log-likelihood ofH derived from these models is adopted in
the objective function in the separation stage. The additional
log-likelihood term derived from the exponential distribution
turns out to be a weightedL1 norm penalty. Experimental
results on audio source separation show that the proposed
method can enhance the separation performance in terms of
the perceptual evaluation of speech quality (PESQ) [20] and
the signal-to-distortion ratio (SDR) [21].

2. NMF-BASED SPEECH ENHANCEMENT

NMF is mainly applied on the speech magnitude or power
spectrogram to obtain a set of basis vectors to represent a
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speech signal. In our notations, an input nonnegative matrix
V∈ R

M×N
+ is approximated by the product of a basis matrix

W∈ R
M×r
+ and an encoding matrixH∈ R

r×N
+ (V ≈WH)

whereM andN denote the number of frequency bins and
short-time frames, respectively, andr is the number of ba-
sis vectors. We apply NMF on the magnitude spectrogram of
speech and noise. Hence, speech basis matrixWs∈ R

M×rs
+

is trained using a clean speech DB, and noise basis matrix
Wn∈ R

M×rn
+ is obtained from a noise DB, wherers and

rn indicate the number of speech and noise basis vectors, re-
spectively. In order to process an input with noisy magnitude
spectrum, a joint basis matrixW = [Ws Wn]∈ R

M×(rs+rn)
+

is first constructed. In this paper, the Kullback-Leibler diver-
gence (KLD) and multiplicative update rules (MuR) are used
as a distance measure and an optimization method, respec-
tively. The update rules for the encoding and basis matrices
are as following [18]:

Hi ← Hi ⊗
WT

i
Vi

WiHi

WT
i 1

, Wi ←Wi ⊗
Vi

WiHi
HT

i

HT
i 1

(1)

where
⊗

and a
b

denote the element-wise multiplication and
division of matrices, and subscripti denotes either speech or
noise, andVi∈ R

r×Ni

+ is the magnitude spectrogram of the
training signal whereNi is the total number of short-time
frames in the training signal for sourcei, and1 is a matrix
of suitable size with all elements equal to one.Hi andWi

are obtained by iteratively applying the update rules (1) for a
fixed number of iterations.

In the speech enhancement stage, speech and noise mag-
nitude spectra are first approximated using NMF, and then a
spectral gain is determined to obtain the enhanced speech sig-
nal. This is further explained in the following. LetY (t) ∈
CM×1, S(t)∈ CM×1, andN(t)∈ CM×1 denote the short-
time Fourier transform (STFT) coefficients of the noisy, clean
speech, and noise signals, respectively, for thet-th frame.
We assume an additive noise model, which is expressed as
Y (t) = S(t)+N(t). The input vector to the NMF analysis is
the magnitude spectrum of the noisy signal in the present time
frame, i.e.,V (t) = |Y (t)|∈ R

M×1
+ where|·| denotes element-

wise absolute value operator. The noisy magnitude spectrum
V (t) is approximated asV (t) ≈ WH(t), where the basis
matrixW is obtained during the training phase (as explained
above), andH(t) = [Hs(t)

T Hn(t)
T ]T∈ R

(rs)+rn×1
+ de-

notes the encoding vector of the noisy signal in thet-th frame.
With fixedW, H(t) is computed by iterating the left part of
(1), in whichHs(t) andHn(t) are initialized to nonnegative
random numbers. After convergence or a fixed number of
iterations of the algorithm, the speech and noise magnitude
spectra are approximated as:

|Ŝ(t)| = WsHs(t), |N̂(t)| = WnHn(t). (2)

We adopt the gain function similar to Wiener filter to enhance
the speech signal, where we use speech and noise approxima-

Fig. 1. The histograms of some rows ofH
train
S corresponding

to the most frequently and rarely used basis vectors.

tions from (2). The gain function is given as

G(t) =
|Ŝ(t)|2

|Ŝ(t)|2 + |N̂(t)|2
(3)

The STFT coefficients of the speech signal at thet-th frame
are now obtained according tôSfinal(t) = G(t)

⊗
Y (t).

3. NMF-BASED SOURCE SEPARATION UTILIZING
PRIOR KNOWLEDGE ON ENCODING VECTOR

Though most of the previous works only use the trained basis
matrix during the source separation phase, the encoding ma-
trix obtained for the training data is regarded to posses impor-
tant information as to how frequently each basis is utilizedto
reconstruct the clean source signals. In the training procedure,
WS∈ R

M×rs
+ andHtrain

S ∈ R
rs×Ns

+ are obtained through the
NMF analysis of the clean target signal dataV

train
S ∈ R

M×Ns

+

while WN∈ R
M×rn
+ andH

train
N ∈ R

rn×Nn

+ are computed
from the noise signal dataVtrain

S ∈ R
M×Nn

+ . In [8], the distri-
bution of the logarithm of the elements of an encoding vector
is modeled asr-dimensional multivariate Gaussian distribu-
tion of which the parameters are estimated fromHtrain

S and
H

train
N assuming thatHS andHN are independent. Based

on this statistical model, the log-likelihood of the current esti-
mate ofH for the test dataV is subtracted from the objective
function used in the source separation phase. Although the
utilization of the prior knowledge onH brought about perfor-
mance improvement, the method in [8] has a high complex-
ity and the chosen statistical model does not fit to the actual
distribution of the data as theHtrain

S or Htrain
N . In this pa-

per in order to alleviate this, we propose new statistical mod-
els for the elements ofH . To analyze the actual histograms
of the row elements ofHtrain

S , we performed the standard
NMF analysis on a database of clean speech magnitude spec-
tra, i.e.,Vtrain

S = [|Y (1)||Y (2)| · · · |Y (N)|]∈ R
M×N
+ where

Y (t)∈ CM×1 is the2(M −1)-point STFT of speech at frame
t andN is the total number of frames in the training data.
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TIMIT database with a sampling rate of16 kHz was used
for the speech data,M = 257, andN = 12, 728. Fig.
1 shows the histograms corresponding to the two rows of
H

train
S having the one largest and smallestL1 norms. There

rows roughly correspond to the most frequently and rarely
used basis vectors. The shape of the histograms shows sparse
distributions which can be better approximated by a gamma
or an exponential distribution rather than a lognormal distri-
bution as used in [8]. Moreover, a wide range of sparsity
level was observed along different bases. The analysis on
theHtrain

N for various noise signals also showed similar ten-
dency.

Based on these empirical analyses, we propose in this
work to prior distribution of each component of the encoding
vector as an independent gamma or exponential distribution
of which the parameters are estimated from the correspond-
ing row ofHtrain

S orHtrain
N . The probability density function

(pdf) of the gamma distribution is given by

P (x) =
xk−1e−

x
θ

θkΓ(k)
, (4)

wherek, θ, andΓ(·) indicate a shape parameter, a scale pa-
rameter, and the gamma function, respectively. Because the
correlation coefficients among different components of the
encoding vector were found not so significant, we assumed
that each component of the encoding vector is statisticallyin-
dependent to avoid heavy computation. The log-likelihood
of the current estimate forH based on the assumed model
is subtracted from the original objective function to form the
modified objective function for the separation phase as given
by

f(H) = D(V |WH)− γg

r∑

i=1

[(ki − 1)logHi −
Hi

θi
] (5)

in which the constant term irrelevant ofH is ignored. The
MuR with KLD is now modified to

Hi ← Hi

∑M

k=1
Wk,iVk∑

r
f=1

Wk,fHf

∑M
k=1 Wk,i + γg(

1−ki

Hi
+ 1

θi
)
. (6)

It is noted thatki ≤ 1 to match the shape of the distribution
shown in Fig. 1.

Alternatively, we can employ an exponential distribution
instead of the gamma distribution of which the pdf is given by

f(x; η) = ηe−ηx x ≥ 0, (7)

whereη is the rate parameter, which is the reciprocal of the
mean. It is noted that it is a special case of the gamma distri-
bution withk = 1. As in the case of the gamma distribution,
the log-likelihood ofH is combined with the KLD between
V andWH so that the final objective function becomes

f(H) = D(V |WH) + γe

r∑

i=1

(ηiHi) (8)

where ηi is the rate parameter for the distribution ofHi,
andγe is the parameter controlling the trade-off between the
reconstruction error and the log-likelihood. The MuR with
KLD is now given by

Hi ← Hi

∑M

k=1
Wk,iVk∑

r
f=1

Wk,fHf

∑M

k=1 Wk,i + γeηi
. (9)

It is noteworthy that the penalty term in (8) becomes essen-
tially the same as that of sparse NMF in [19] except that the
weighting byηi, which is the reciprocal of theL1 norm or
mean of the corresponding row ofHtrain

S orHtrain
N .

4. EXPERIMENTS

To evaluate the performance of the proposed algorithm, it is
applied to audio source separation in which the target signal
is speech. The proposed constraints in the separation stage
based on the prior distribution ofH modeled by the gamma
and exponential distributions were compared with that based
on the lognormal distribution andL1 norm constraint in terms
of the PESQ and and SDR.

Speech samples were chosen from TIMIT database while
the noise signals used for the experiments wereF-16, fac-
tory1, babble, andmachinegun noises from the NOISEX-92
DB. Each signal was sampled at16 kHz, and the Hamming
window and a512-point discrete Fourier transform with75%
overlap were applied to form a spectrogram. Training DB for
speech contains of102-second long speech data spoken by
40 different speakers, while the noise data for training were
117-second long in total for each type of noise which has the
same level with speech data. To test the proposed and conven-
tional methods,32 sentences spoken by32 different speakers
which weren’t included in the training DB were mixed with
the aforementioned four types of noise data which were not
used in the training at0 dB SNR to construct the test DB. The
MuR was applied with the distance measure of KLD in the
NMF analysis, and the numbers of iterations for the training
and test phases were100 and30, respectively, and the each
number of bases was128 (rs = rn = 128).

In this experiment, the training procedure is implemented
as in II.A without any constraint, and various penalty terms
were utilized to computeH in the source separation stage
which is then used to enhance the signal as in II.B. The
penalty terms used in the experiments were:
•standard: no constraint as in (1)
•L1: L1 norm ofH in (9) with ηi = 1
•lognormal: the negative log-likelihood oflogH assuming
thatH follows lognormal distribution as in [8] wherelogA
denotes element-wise logarithm.
•gamma: the negative log-likelihood ofH in which the
PDF ofH is modeled as an independent gamma distribution,
which is shown in (5).
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(a) The PESQ scores

(b) SDRs

Fig. 2. Source separation performance of NMF methods with
various prior models ofH (rs = rn = 128).

•exponential: the negative log-likelihood ofH where the dis-
tribution forH is assumed to be an independent exponential
distribution, which is given in (8).

L1 is included since the penalty term based on the ex-
ponential distribution results in the weightedL1 norm of
H . The parameters for the lognormal and exponential dis-
tributions were determined by the1st and2nd order mo-
ments ofHtrain

S and H
train
N , while those for the gamma

distribution were achieved by the maximum likelihood es-
timation through the MATLAB function “fitdist”. The pa-
rameters for each penalty term were chosen to maximize
the source separation performance, which fall in the ranges
λL1∈ [0.001, 1], γlognormal∈ [0.001, 0.3], γg∈ [0.01, 0.04]
andγe∈ [0.005, 0.02]. Fig. 2 shows the performance of the
source separation when the input SNR was0 dB. For both
of the cases, the penalty terms based on sparse distributions
outperformed other penalty terms. One interesting observa-
tion is that the system based on the exponential distribution
performed better than that based on the gamma distribution
although the exponential pdf is a special case of the gamma
pdf. One possible interpretation is that the objective function
in (5) is not convex ifki < 1, in contrast to the exponen-
tial modeling which leads to a convex objective function. It

Table 1. Source separation performance when the power level
of the test DB differs from that of the training DB.

distribution Power level PESQ SDR
of the test data

standard original 1.9681 5.5763

lognormal
original 2.0043 6.2264
+10dB 1.9904 6.1562
-10dB 2.0052 6.0510

gamma
original 2.0878 6.9930
+10dB 2.1717 7.4682
-10dB 1.9320 4.0748

exponential
original 2.2648 7.9071
+10dB 2.2415 7.9153
-10dB 2.2188 7.8422

can be seen from (6) that onceHi has a very small value,
it becomes smaller very quickly and cannot reach the global
optimum. Also, it is noted that thelognormal required heavy
computation whenrs andrn are large due to the multivariate
modeling, while the proposed approaches were processed
much faster. One potential issue for the prior model-based
approaches is that the performance of the systems is ques-
tionable if the power level of the test data is significantly
different from that of the training data based on which the
model parameters are estimated. The effect of the power
level mismatch may not be crucial since the KLD term would
regulate the difference betweenV andWH and the effect
of the power mismatch have impact on all the element ofH .
To verify this, another set of experiments have been carried
out for the test data which are with10 dB higher or10 dB
lower power level. Table 1 summarizes the source separation
performance with these data and the original data with the
matched level, when the same parameters to Fig. 2 were
used. The proposed method based on the exponential model
resulted to be very robust to the level mismatch. As for the
system based on the gamma distribution, the performance
increased as the input level got higher, possibly because it
was less likely to fell into local optima near the small values
of Hi if the input level was higher.

5. CONCLUSION

In this paper, to utilize the statistical information on theen-
coding vector obtained during the training, we propose an
additional penalty term in the test phase which is the nega-
tive log-likelihood of the encoding vector based on a sparse
distribution such as an exponential or a gamma distribution.
Experimental results show that the empirical distributionof
each encoding vector component was actually sparse, and the
proposed methods can enhance the source separation perfor-
mance in terms of PESQ and SDR when applied the audio
source separation task in which the target signal is speech.
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