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ABSTRACT

The targets of speech separation, whether ideal masks or magni-
tude spectrograms of interest, have prominent spectro-temporal
structures. These characteristics are very worthy to be exploited
for speech separation, however, they are usually ignored in previ-
ous works. In this paper, we use nonnegative matrix factorization
(NMF) to exploit the spectro-temporal structures of magnitude spec-
trograms. With nonnegative constrains, NMF can capture the basis
spectra patterns of speech and noise. Then the learned basis spectra
are integrated into a deep neural network (DNN) to reconstruct the
magnitude spectrograms of speech and noise with their nonneg-
ative linear combination. Using the reconstructed spectrograms,
we further explore a discriminative training objective and a joint
optimization framework for the proposed model. Systematic ex-
periments show that the proposed model is competitive with the
previous methods in monaural speech separation tasks.

Index Terms— Speech Separation, Deep Neural Network, Non-
negative Matrix Factorization, Spectro-Temporal Structures

1. INTRODUCTION

Segregating the interested speech from the mixture has many im-
portant realistic applications. A good speech separation system can
significantly improve the speech intelligibility and the performance
of automatic speech recognition [1–4]. However, in real-world en-
vironments, speech separation is still a challenging task, especially
when noise is non-stationary and only one microphone is available.

Speech separation can be formulated as a supervised learning
problem [5–8]. A typical supervised speech separation system usu-
ally learns a mapping function from noisy features to certain ideal
masks or magnitude spectrograms of interest through a supervised
learning algorithm [5]. Recently, supervised speech separation has
been extensively studied and shown to be substantially promising for
the challenging acoustic conditions [9–11].

Due to speech production mechanisms, speech presents promi-
nent harmonic structures and temporal continuities, which results
that the targets of speech separation, whether ideal masks or mag-
nitude spectrograms of interest, have strong spectro-temporal struc-
tures [12]. Explicitly exploiting these characteristics will probably
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improve the separation performance. However, previous method-
s usually ignore these structure pattens and directly predict ideal
masks or magnitude spectrograms of interest using a deep neural
network (DNN) [5, 6].

Nonnegative matrix factorization (NMF) is a well-known tech-
nique that can discover parts-based representations underlying non-
negative data [13]. When performed on the targets of speech sep-
aration, such as the magnitude spectrograms of interest, NMF can
capture the spectra patterns of output targets [14–16]. In [12], Wang
uses NMF to preserve the spectro-temporal structures of the square-
root ideal ratio mask, and DNN is used to predict the activation coef-
ficients of mask-level spectro-temporal bases. Although the output
structures are captured by NMF, DNN optimizes the intermediate
separation objective rather than the actual separation objective, and
the learned basis spectra are completely independent of training for
DNN, which probably lead to the separation that is more sensitive to
the estimation errors of DNN.

In this paper, we propose to use NMF to exploit the spectro-
temporal structures of speech and noise and incorporate the basis
spectra learned by NMF into DNN-based speech separation. In ad-
vance, we perform NMF on the magnitude spectrograms of the clean
speech and noise to obtain their basis spectra. Then the learned ba-
sis spectra of speech and noise are integrated into the original output
layer of DNN. And DNN is trained to simultaneously reconstruct
the magnitude spectrograms of speech and noise with the nonnega-
tive linear combination of the basis spectra. Its original outputs are
used as the activation coefficients of the bases rather than to compute
the error metric. To enforce that the sum of the reconstruction result-
s is equal to the original mixture, we use a Wiener-type filtering to
obtain the final estimates for each source. Using the final estimation
results, we further explore a discriminative training objective and a
joint optimization framework for the proposed model. In fact, the
basis spectra and the Wiener-type filtering can be viewed as extra
layers that are added to the original output of DNN, but they are
deterministic and has no connective weights to be optimized.

2. PROBLEM FORMULATION

The task of speech separation is to obtain an estimate ŝ(k) of target
speech s(k) from a mixture signal x(k) containing additive noises
n(k). For this problem, the short time Fourier transform (STFT) is
the commonest technique. We define X(t, f), Ys(t, f) and Yn(t, f)
as the STFT coefficients of x(k), s(k) and n(k), respectively, where
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t represents the frame index and f is the frequency-index. Due to
the sparse nature of speech, the magnitude spectrum of the mixture
speech can be approximated as follows [17, 18]:

|X(t, f)| ≈ |Ys(t, f)|+ |Yn(t, f)| (1)

where |·| denotes the absolute value operator in the complex domain.
For simplicity, we rewrite (1) in vector form as follows:

x ≈ ys + yn (2)

where x ∈ RF×1
+ , ys ∈ RF×1

+ and yn ∈ RF×1
+ denote the magni-

tude spectrums of the mixture, the speech and the noise at the time
frame t, respectively. For simplicity, unless mentioned explicitly, the
time frame index t is omitted. F is the number of frequency bins.

As we perform NMF on ys and yn, we can obtain the approx-
imate factorization of ys and yn via sets of basis vectors and their
activation coefficients as follows:

ys ≈ Bsas; yn ≈ Bnan (3)

where Bs ∈ RF×Ls
+ and Bn ∈ RF×Ln

+ are the basis spectra of
speech and noise, respectively. Ls and Ln are the numbers of ba-
sis vectors of speech and noise, respectively. as ∈ RLs×1

+ and
an ∈ RLn×1

+ are the time-varying activation levels of the corre-
sponding basis vectors. At this study, the basis matrices Bs and Bn

are learned using the appropriate training data in advance. With Bs

and Bn held fixed, the magnitude spectrum x of the mixture signal
can be approximated as follows:

x ≈ ŷs + ŷn ≈ Bsâs +Bnân (4)

where âs and ân are the unknown activation coefficients and at run
time need to be estimated using the observed mixture signal. Then a
Wiener-type filtering can be used to reconstruct the magnitude spec-
trums of the speech and the noise while ensuring that the estimates
of speech and noise sum to the mixture [8]:

ỹs =
Bsâs

Bsâs +Bnân
⊗ x; ỹn =

Bnân

Bsâs +Bnân
⊗ x (5)

where the division is performed element-wise, and ⊗ denotes an
element-wise multiplication. Finally, the speech ŝ(k) and the noise
n̂(k) are obtained using the noisy phase and the inverse STFT.

3. PROPOSED METHOD

From the above problem formulation, we can see that the fundamen-
tal issues of speech separation are to obtain the basis spectra Bs and
Bn of speech and noise, and estimate the corresponding activation
coefficients âs and ân. Bs and Bn can be obtained by performing
NMF on the magnitude spectrograms of speech and noise in training
phase. With the bases held fixed, we use a DNN to learn the corre-
sponding activation coefficients from the mixture input. Finally, the
resulting output from Wiener-type filtering is used to compute the
error metric for optimizing the network weights.

3.1. Model Architecture

With the bases Bs and Bn held fixed, we construct a DNN to esti-
mate the magnitude spectrograms ŷs and ŷn of speech and noise in
the spaces spanned by Bs and Bn, respectively, and then the outputs
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Fig. 1. The architecture of the proposed model.

follow a Wiener-type filtering operator to obtain the final estimates
ỹs and ỹn , as shown in Fig. 1. Different from the standard DNN,
the original output layer of the proposed DNN is followed by a NMF
layer and a Wiener-type filtering layer. As extra layers, they are de-
terministic and has no connective weights to be optimized, but their
resulting outputs are used to compute the error metric for optimizing
the network weights.

3.2. Training Objectives

Commonly, modeling all sources in a model can improve separation
performance due to the complementarity between different sources
in the mixture [7]. In this paper, we adapt the architecture of DNN
to simultaneously predict the magnitude spectrograms of speech and
noise, as shown in Fig. 1. In order to suppress more noise and pre-
serve more speech components, we further explore a discriminative
objective for the proposed network. Given the output predictions ỹs

and ỹn, the discriminative objective not only increases the similarity
between the prediction and its target, but also decreases the similar-
ity between the prediction and the targets of other sources, as shown
in Eq. (6).

J=
1

2
(‖ys−ỹs‖22+‖yn−ỹn‖22)−

λ

2
(‖ys−ỹn‖22+‖yn−ỹs‖22) (6)

where λ specifies the relative importance of the term and can be
experimentally chosen. Introducing Eq. (5) into Eq. (6), we obtain
the final objective function as follows:

J=
1

2
(

∥∥∥∥ys−
Bsâs

Bsâs+Bnân
⊗x

∥∥∥∥2

2

+

∥∥∥∥yn−
Bnân

Bsâs+Bnân
⊗x

∥∥∥∥2

2

)

−λ
2
(

∥∥∥∥ys−
Bnân

Bsâs+Bnân
⊗x

∥∥∥∥2

2

+

∥∥∥∥yn−
Bsâs

Bsâs+Bnân
⊗x

∥∥∥∥2

2

)

(7)

3.3. Optimization

Taking x as the input of DNN, except the NMF layer and the Wiener-
type filtering layer, we recursively compute the activations of all lay-
ers in the DNN as follows:

zl+1 = Wlal; al+1 = f(zl+1) (8)
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where al is the activations of the layer (l), zl is the total weighted
sums of inputs to the layer (l), including the bias term, and Wl is the
connection weights between the layer l and the layer (l+1). f(·) is
the element-wise activation function. After obtaining the activations
anl of the output layer (nl), we let ân = anl(1, ..., Ln) and âs =
anl(Ln +1, ..., Ln +Ls), and then the final outputs ỹs and ỹn can
be computed by Eq. (5).

According to the objective function in Eq. (7), we can compute
the error metric, and then through the backward propagation of target
errors, the network weights can be iteratively updated.

Using the chain rule, the gradients of the objective function with
respects to the network weights can be computed as follows:

∇Wl =
∂J

∂Wl
=

∂J

∂zl+1

∂zl+1

∂Wl
=

∂J

∂zl+1
(al)

T (9)

To simplify notations, we introduce a variable δ and let δl= ∂J
∂zl

. For
the output layer (l = nl), we have:

δnl =
∂J

∂anl

⊗ ∂anl

∂znl

=

[
∂J

∂ân
;
∂J

∂âs

]
⊗ f

′
(znl) (10)

where,

∂J

∂ân
=(Bn)

T [(ys−ỹs)−λ(yn−ỹs)−(yn−ỹn)+λ(ys−ỹn)]⊗

ỹs

ŷs+ŷn

(11)
∂J

∂âs
=(Bs)

T [−(ys−ỹs)+λ(yn−ỹs)+(yn−ỹn)−λ(ys−ỹn)]⊗

ỹn

ŷs+ŷn

(12)
For the l-th layer (l = nl − 1, nl − 2, · · ·, 2), we have:

δl = ((Wl)
T δl+1)⊗ f

′
(zl) (13)

After obtaining all δ terms, the partial derivatives of the objective
function with respects to the network weights can be computed as
follows:

∇Wl = (δl+1)(al)
T (14)

Then, we use the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm [19] to update the weights Wl.

4. EXPERIMENTS

4.1. Dataset and evaluation metrics

In this section, we systematically evaluate the performance of the
proposed model with the TIMIT corpus [20] and the NOISEX cor-
pus [21]. The TIMIT contains broadband recordings of 630 speakers
of eight major dialects of American English, each reading ten pho-
netically rich sentences. The NOISEX contains 15 common types
of noises in real-world environments, with length of about 4 min for
each. These noises mainly cover a variety of daily noises and most
of them are highly non-stationary.

For training, 100 speech utterances from 50 different speakers,
with 2 utterances for each speaker, are randomly chosen from the
TIMIT training part. They are randomly mixed with 9 types of nois-
es from NOISEX at a SNR of continuous variation from -5 to 5 dB,

which generates 2000 mixture utterances. To obtain the basis spectra
Bs and Bn of speech and noise, we perform NMF on all utterances
of the TIMIT training part and 9 types of noises from NOISEX, re-
spectively. The chosen noises for NMF are the same as those chosen
to generate the training set. For testing, we randomly choose 100
clean speech utterances from the TIMIT testing part. Each utterance
is recorded by a different speaker. They are randomly mixed with
15 types of noises from NOISEX at -10, -7, -5, -2, 0, 2, 5, 7 and
10 dB, which generates 500 mixture utterances. 6 types of noises
among them are unseen in training set for testing the generalization
to the unmatched noise. In the same way, we construct the valida-
tion set of 500 mixture utterances. But the chosen speech utterances
for the validating set are different from those for the training set and
the testing set. In addition, we randomly cut each noise utterance of
NOISEX into different parts to ensure that the different parts of each
noise are used to construct the different datasets.

We take Source to Interference Ratio (SIR), Source to Artifacts
Ratio (SAR), Source to Distortion Ratio (SDR) and Perceptual Eval-
uation of Speech Quality (PESQ) [22] as evaluation metrics. SIR,
SAR and SDR measure the ratios of source to interference, artifacts
and distortion, and can be computed by the BSS Eval toolbox [23].
The PESQ score quantifies the objective speech quality. For all eval-
uation metrics, higher values mean the better separation quality.

4.2. Related models and setting

To evaluate the proposed model (denoted as ‘P-DNN-NMF’), we
systematically compare with the DNN-based (denoted as ‘DNN-1’)
[6] and the previous DNN-NMF-based (denoted as ‘DNN-NMF’)
speech separation models [12, 24]. In all experiments, a standard
DNN, with two hidden layers of 1000 rectified linear units (Re-
Lu) [25], is used as the learning model. All DNNs are trained from a
random initialization, and the network weights are updated using the
L-BFGS algorithm. The maximum epoch is set to 500. The mag-
nitude spectrograms, extracted by applying a 512-point STFT with
50% overlap to the mixture signals, is used as the input features. To
capture the context information, a window (5 frames) of features are
concatenated together to form a long feature vector. Although the
final objectives of all separation models in this paper are to estimate
the magnitude spectrograms of speech, they are achieved by differ-
ent means. DNN-1 directly predicts the magnitude spectrograms of
speech and noise. DNN-NMF predicts the activation coefficients of
speech and noise inferred by NMF, and the NMF is trained in ad-
vance using the clean speech and noise those are mixed to construct
the training set. Then the predicted activation coefficients are used
to generate the corresponding magnitude spectrograms with nonneg-
ative linear combination of the basis spectra. And P-DNN-NMF in-
tegrates a NMF layer and a Wiener-type filtering layer into the DNN
to reconstruct the magnitude spectrograms of speech and noise. The
NMF layer is composed of the basis spectra of speech and noise,
which are obtained by performing NMF on the TIMIT training part
and NOISEX, respectively. In all experiments, we set the number
of NMF bases to be 256. To capture temporal structures, NMF is
trained on a window of 5 frames rather than single time slices. The
original output layers of DNN-NMF and P-DNN-NMF both have
256 × 2 units and DNN-1 has 257 × 2 output units. All original
output layers use ReLu as the activation function. In addition, To
ensure that the estimates of speech and noise sum to the mixture, in
testing, a Wiener-type filtering is applied to the outputs of DNN-1
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and DNN-NMF to obtain the final estimates of magnitude spectro-
grams of speech and noise.

4.3. Results and discussions

Firstly, we explore the effects of different λ on the performance of
P-DNN-NMF. Table 1 reports the average gains of SDR (GSDR)
on the validating set using different λ, which can be computed as
follows:

GSDR(ŝ, s, x) = SDR(ŝ, s)− SDR(x, s) (15)

GSDR reflects the improvement of overall performance. We can
observe that λ = 0.05 provides better results compared with other
values. Hence, we fix λ to 0.05 in the following experiments.

Table 1. The performances using different λ
λ 0.005 0.01 0.05 0.10 0.25 0.50

GSDR 10.00 9.99 10.08 10.06 9.81 9.40

Figure 2 presents the results of different speech separation
models (DNN-1, DNN-NMF and P-DNN-NMF) in matched and
unmatched noise conditions. We can observe that P-DNN-NMF
achieves best results on all evaluation metrics (SDR, SIR, SAR
and PESQ) and consistently outperforms DNN-1 and DNN-NMF
in matched noise condition. It mainly owes to that the proposed
network architecture integrating NMF can capture the invariable
spectro-temporal structures in signals and the discriminative sep-
aration objective can suppress more noise. Although DNN-NMF
also uses NMF to exploit the spectra patterns of speech and noise,
NMF and DNN are independently treated. It will lead to a double
error problem and that the separation is more sensitive to estimation
errors. Therefore, DNN-NMF only achieves limited improvement
compared to DNN, especially in unmatched noise conditions.

Finally, we show several examples of separation results in Fig.
3. We can observe that the proposed P-DNN-NMF can recover the
speech with high quality. Compared to that from DNN-1, the sepa-
rated spectrogram from P-DNN-NMF presents cleaner spectra struc-
tures and richer details, especially in high frequency bands. The
results suggest that P-DNN-NMF can suppress more interferences
with less artifacts and speech distortion. It mainly owes to that
the nonnegative linear combination of the basis spectra learned by
NMF can preserve the speech spectra structures and the discrimina-
tive training objective can suppress more interferences.

5. CONCLUSIONS AND RELATED WORKS

In this work, a novel DNN integrating NMF is proposed to exploit
spectro-temporal structures of speech and noise for speech separa-
tion, and a discriminative training objective is further explored for
the proposed model. In the proposed model, NMF is used to learn
the spectra patterns of speech and noise, which are added to the o-
riginal output of DNN as an extra layer. The discriminative training
objective enhances the training of the discrimination between speech
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Fig. 2. The results of different speech separation models in matched
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Fig. 3. Top left: the spectrogram of the mixture speech (in log s-
cale); Top right: the groundtruth spectrogram for the speech; Bottom
left: the separation result from DNN-1; Bottom right: the separation
result from P-DNN-NMF.

and noise, which can achieve higher SIR. The experimental result-
s show that the proposed model significantly improves the perfor-
mance of speech separation, and also suggest that exploiting spectro-
temporal structures of output targets is substantially promising for
speech separation. Based on this idea, several methods have been
proposed. Wang [12] proposes to use NMF to exploit the spectro-
temporal patterns of the square-root ideal ratio mask. Hershey [26]
extends NMF to a deep architecture for speech separation. In our
previous work [27], we use an autoencoder to exploit the spectro-
temporal structures of the ideal ratio mask and the Gammatone fre-
quency power spectrum. In fact, any kind of generative models can
be used to exploit the spectro-temporal patterns of signals. These
can be further studied in the future.
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