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ABSTRACT

Mask estimation is a central task in blind signal processing
including source separation, denoising, and multi-source lo-
calization. In this paper, we define a complex Bingham mix-
ture model (cBMM), and propose it as a model of directional
statistics for mask estimation. The complex Bingham distri-
bution can represent not only rotationally symmetric but also
rotationally asymmetric distributions. Therefore, it can pre-
cisely model stochastic variation of the directional statistics
due to reverberation, noise, source movement, etc., which is
not necessarily rotationally symmetric. In an experimental
evaluation, the proposed cBMM outperformed a conventional
complex Watson mixture model (cWMM) in terms of blind
source extraction from diffuse noise, reducing the word error
rate by 0.91% absolute on CHiME-3 challenge data.

Index Terms— Complex Bingham distribution, denois-
ing, diffuse noise, clustering.

1. INTRODUCTION

Time-frequency clustering of observed signals is fundamen-
tal to blind acoustic signal processing including source sep-
aration [1–7], denoising [8, 9], and multi-source localiza-
tion [10]. The clustering can be performed based on modeling
the probability distribution of source location features with a
mixture model. As such features, most conventional meth-
ods employ estimated time differences of arrival (TDOAs)
between microphones. However, reverberation degrades the
accuracy of TDOA estimation, which in turn degrades the
performance of such methods.
To address the above issue, more recent methods [4–9]

utilize directional statistics [11] as source location features.
In this paper, the term “directional statistics” refers to a nor-
malized M -dimensional observation vector in the short-time
Fourier transform (STFT) domain, where M denotes the
number of microphones. It has been shown experimentally
that the directional statistics enable effective blind signal
processing even in reverberant environments [5].
Conventionally, the directional statistics were modeled by

a complex Watson mixture model (cWMM) [4] or its vari-
ant [5]. However, the complex Watson distribution cannot

precisely model the stochastic variation of the directional
statistics caused by reverberation, noise, source movement,
etc. This is because the complex Watson distribution is rota-
tionally symmetric about an axis, while such variation is ro-
tationally asymmetric in general. Therefore, there is room to
improve the clustering accuracy further by utilizing a model
that can also represent rotationally asymmetric distributions.
In this paper, we define a complex Bingham mixture

model (cBMM), and propose it as a model of directional
statistics for mask estimation. The complex Bingham distri-
bution can represent not only rotationally symmetric but also
rotationally asymmetric distributions.
The rest of the paper is structured as follows. Section 2

formulates the blind signal enhancement problem including
source separation and denoising. Section 3 reviews the con-
ventional cWMM of directional statistics for blind signal
enhancement, and Section 4 describes the proposed cBMM.
Section 5 describes an experimental evaluation in terms of
blind source extraction from diffuse noise. Section 6 con-
cludes the paper.

2. PROBLEM FORMULATION

2.1. Blind Signal Enhancement

Suppose observed signals at M(≥ 2) microphones are mix-
tures of N(≥ 2) acoustic signals each of which is either a
target signal or noise. In this paper, we consider blind signal
enhancement, i.e., estimation of each target signal using the
observed signals only. We assume that N is known.
The above general problem includes the following special

problems: (a) source separation, in which all acoustic signals
are target signals; (b) denoising, in which one of the N =
2 acoustic signals is noise and the other is a target signal;
(c) joint source separation and denoising, in which one of
the N ≥ 3 acoustic signals is noise and the others are target
signals.

2.2. Our Focus: Mask Estimation

Under the assumption that each target signal is sparse in the
time-frequency domain, all the above problems boil down to
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mask estimation. This is true not only for the noiseless case
(a) as per [5] but also for the noisy cases (b) and (c) as ex-
plained in the following.
Consider the noisy cases (b) and (c). We assume that, at

each time-frequency point, the observed signals contain the
noise and take one of the following N states

• S(n) (1 ≤ n ≤ N − 1): the state in which the observed
signals contain the nth target signal plus the noise,

• S(N): the state in which the observed signals contain
the noise only.

Suppose we are given masks M(n)
tf for n = 1, . . . , N ,

whereM(n)
tf takes 1 at the time-frequency points (t, f) corre-

sponding to the state S(n) and takes 0 elsewhere. Here, t de-
notes the frame index and f the frequency bin index. We can
compute the covariance matrix of the nth target signal plus the
noise using (t, f) withM(n)

tf = 1 (1 ≤ n ≤ N − 1) and that
of noise using (t, f) with M(N)

tf = 1. Subtraction of these
covariance matrices yields the covariance matrix of the nth
target signal, with which one can design a beamformer such
as the multichannel Wiener filter [8] for signal enhancement.
Therefore, (b) and (c) have boiled down to mask estimation.
In the remainder, we focus on mask estimation.

3. CONVENTIONAL METHOD

3.1. Mask Estimation by Clustering Directional Statistics

Mask estimation is usually performed by extracting at each
time-frequency point, and clustering intoN clusters, a feature
vector which represent the direction of sound arrival. In such
an approach, the signal enhancement performance depends on
the clustering accuracy, which in turn depends on the design
of the feature vector and of its model distribution.
Let us denote by ytf ∈ C

M the vector composed of the
observed signals at the M microphones at (t, f). A conven-
tional method [5] uses a feature vector defined by

ztf � ytf

‖ytf‖ , (1)

where ‖ · ‖ denotes the 2 norm. (1) lies on the unit hyper-
sphere of CM . Such data in a spherical sample space can-
not be treated properly by ordinary statistics for linear sample
spaces, and call for directional statistics [11]. In this paper,
we also refer to ztf as directional statistics.
In the remainder, we mainly focus on how to model the

directional statistics (1).

3.2. Complex Watson Mixture Model (cWMM) of Direc-
tional Statistics

The conventional method [5] models the probability distribu-
tion of the directional statistics ztf at each f with a complex

Watson mixture model (cWMM)

p(ztf ; Θf ) =

N∑
n=1

α
(n)
f W

(
ztf ;a

(n)
f , κ

(n)
f

)
. (2)

Here, a complex Watson distribution [11]

W
(
ztf ;a

(n)
f , κ

(n)
f

)
∝ exp

[
κ
(n)
f

∣∣a(n)H
f ztf

∣∣2], (3)

which is used in directional statistics and defined on the unit
hypersphere, models the distribution of ztf for each acous-
tic signal. Here, H denotes Hermitian transposition. The unit
vector a(n)

f represents the location of the distribution of ztf
for each acoustic signal, κ(n)

f the concentration of the distri-
bution, and the mixture weight α(n)

f the height of the distri-
bution. α

(n)
f satisfies

∑N
n=1 α

(n)
f = 1 and 0 ≤ α

(n)
f ≤ 1.

Θf �
{
α
(n)
f ,a

(n)
f , κ

(n)
f

∣∣∣∀n} denotes the set of the model pa-
rameters.
We fit (2) to the observed distribution of ztf by esti-

mating Θf by the maximum likelihood method or the max-
imum a posteriori method. Using estimated parameters
Θ̂f �

{
α̂
(n)
f , â

(n)
f , κ̂

(n)
f

∣∣∣∀n}, we obtain a mask estimate
M̂(n)

tf as the posterior probability of (t, f) corresponding to
each acoustic signal as follows:

M̂(n)
tf =

α̂
(n)
f W

(
ztf ; â

(n)
f , κ̂

(n)
f

)
N∑

k=1

α̂
(k)
f W

(
ztf ; â

(k)
f , κ̂

(k)
f

) . (4)

3.3. Drawback: Limited Expressiveness

(3) has the tight constraint of being rotationally symmetric
about an axis a(n)

f . However, the distribution of ztf for each
acoustic signal is not necessarily rotationally symmetric, de-
pending on the array geometry, the acoustic transfer charac-
teristics, etc. Therefore, (2) may not be able to model the
distribution accurately, which means that there is room for
further improvement in mask estimation accuracy.

4. PROPOSED METHOD

4.1. Complex BinghamMixture Model (cBMM) of Direc-
tional Statistics

To improve the mask estimation accuracy, we define a com-
plex Bingham mixture model (cBMM) by

p(ztf ; Θf ) =
N∑

n=1

α
(n)
f B

(
ztf ;B

(n)
f

)
, (5)
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and propose to use it as the model distribution of the direc-
tional statistics. The element distribution

B
(
ztf ;B

(n)
f

)
∝ exp

(
zHtfB

(n)
f ztf

)
(6)

is a complex Bingham distribution [11] used in directional
statistics. The Hermitian matrix B

(n)
f represents not only

the location and the concentration, but also the direction and
the shape, of the distribution of ztf corresponding to each
acoustic signal. The set of parameters, Θf , is defined by
Θf �

{
α
(n)
f ,B

(n)
f

∣∣∣∀n} this time.
We can easily confirm that the complex Watson distribu-

tion (3) is a special complex Bingham distribution (6) with a
constraint

B
(n)
f = κ

(n)
f a

(n)
f a

(n)H
f . (7)

In contrast, there is no constraint on B
(n)
f for the com-

plex Bingham distribution except the hermiticity. There-
fore, the complex Bingham distribution can represent vari-
ous elliptically-shaped distributions on the hypersphere, and
model the distribution of ztf for each acoustic signal more
precisely.
Since ‖ztf‖ = 1, B

(
ztf ;B

(n)
f

)
= B

(
ztf ;B

(n)
f + ξI

)
.

Here, ξ is an arbitrary real number, and I theM ×M identity
matrix. Hereafter, we remove this indeterminacy by deter-
mining ξ so that the maximum eigenvalue of B(n)

f becomes
zero.
Suppose the eigenvalues ofB(n)

f are all distinct, which is
always satisfied in practice. Then, the normalization constant
for (6) is given by

c
(
B

(n)
f

)
� 2πM

M∑
i=1

exp
(
λ
(n,i)
f

)
∏
j �=i

(
λ
(n,i)
f − λ

(n,j)
f

) , (8)

so that

B
(
ztf ;B

(n)
f

)
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(
B

(n)
f

)−1

exp
(
zHtfB

(n)
f ztf

)
. (9)

Here, λ(n,i)
f (i = 1, . . . ,M) denote the eigenvalues of B(n)

f

with λ(n,1)
f < · · · < λ

(n,M)
f = 0.

4.2. Maximum-Likelihood Parameter Estimation Based
on the Expectation-Maximization Algorithm

We estimateΘf by maximizing the log-likelihood function of
the observed data given by

L(Θf ) =
T∑

t=1

ln
N∑

n=1

α
(n)
f B

(
ztf ;B

(n)
f

)
. (10)

T denotes the number of frames. We can derive an algorithm
for optimizing (10) based on the expectation-maximization
algorithm [12]. The auxiliary Q function is given by

Q
(
Θf ; Θ

′
f

)
=

T∑
t=1

N∑
n=1

M(n)′
tf ln

[
α
(n)
f B

(
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(n)
f

)]
,

(11)

where

M(n)′
tf �

α
(n)′
f B

(
ztf ;B

(n)′
f

)
N∑
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α
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f B

(
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) , (12)

and Θ′
f �

{
α
(n)′
f ,B

(n)′
f

∣∣∣∀n} denotes the current estimate of
Θf .
Substituting (9) in (11), we have

Q
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′
f

)
=
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lnα
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,

whereR(n)
f �

(∑T
t=1 M(n)′

tf ztfz
H
tf

)/(∑T
t=1 M(n)′

tf

)
. Ap-

plying the Lagrangian multiplier method with
∑N

n=1 α
(n)
f =

1, we obtain the following update rule for α(n)
f

α
(n)
f =

1

T

T∑
t=1

M(n)′
tf . (14)

In the following, we derive the update rule for B(n)
f . Let

us assume that the eigenvalues of R(n)
f are all positive and

distinct as follows: 0 < l
(n,1)
f < · · · < l

(n,M)
f . Suppose

the eigenvalue decompositions of B(n)
f and R

(n)
f are given

by B
(n)
f = U

(n)
f Λ

(n)
f U

(n)H
f and R

(n)
f = V

(n)
f L

(n)
f V

(n)H
f .

Then, as in [11],
U

(n)
f = V

(n)
f . (15)

Setting the partial differentiation of (13) with respect to λ(n,i)
f

to zero yields

∂ ln c
(
B

(n)
f

)
∂λ

(n,i)
f

= l
(n,i)
f , i = 1, . . . ,M − 1. (16)

Under high concentration, (16) can be approximately solved
as

λ
(n,i)
f ∼ − 1

l
(n,i)
f

, i = 1, . . . ,M − 1. (17)

Note that λ(n,M)
f = 0.

In the E step we compute (12). In the M step, we update
Θf by (14), (15), and (17).
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5. EXPERIMENTAL EVALUATION IN TERMS OF
BLIND DIFFUSE NOISE REDUCTION

We evaluated the proposed cBMM applied to blind denoising
(i.e., the above case (b)) in terms of automatic speech recogni-
tion performance on the CHiME-3 corpus [13]. The CHiME-
3 is a task of recognizing WSJ-5K prompts read from, and
recorded by, a tablet device equipped with M = 6 micro-
phones in four noisy public areas: on the bus (BUS), cafe
(CAF), pedestrian area (PED), and street junction (STR). For
further details about the data, we refer the readers to [13].
For both the proposed cBMM and the conventional

cWMM, denoising was performed by using the multichannel
Wiener filter [8] designed using the estimated masks. Un-
der the assumption that the noise is diffuse, we modeled the
noise cluster with a uniform distribution on the hypersphere
(i.e., a special cWMM with κ

(n)
f = 0, or a special cBMM

with B(n)
f = 0). Based on the common amplitude modula-

tion property of speech, we used time-dependent instead of
frequency-dependent mixture weights [7]. The frame length
and the frame shift were 64ms and 16ms, respectively, and
the window was hann.
ASR was performed by a DNN-HMM system trained

on 18 hours of multicondition data, where a fully-connected
DNN with 10 hidden layers was used.
The word error rate (WER) for the real data of the devel-

opment set, averaged over all environments, was as follows:

• no denoising: 14.29%,
• denoising with the conventional cWMM: 9.28%,
• denoising with the proposed cBMM: 8.37%.

This result shows the effectiveness of the proposed method.

6. CONCLUSIONS

In this paper, we proposed to model directional statistics of
multichannel audio signals using the cBMM. The method has
been applied to blind source extraction from diffuse noise,
and the superiority of the proposed method to the conven-
tional method was demonstrated in the ASR experiment on
the CHiME-3 dataset.
The future work includes the evaluation of the proposed

method in the case with multiple, and possibly an unknown
number of, sources.
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