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ABSTRACT

A combined spectro-temporal based method is proposed to de-
rive the predominant melody from vocal polyphonic music signals.
In the proposed method, vocal (voiced) and non-vocal (unvoiced)
segments are determined by strength of excitation. The vocal seg-
ments are further divided into voiced notes by detecting their onsets
using transition cues present in spectral domain. The melody con-
tour present in each of the voiced note segments is obtained by using
an adaptive zero frequency filtering (ZFF) in time domain. The pro-
cess of melody extraction is provided in more detail and the initial
results showed the potential use of the proposed method for vocal
melody extraction.
Index Terms: Predominant Melody, Zero Frequency Filter, Note
Onsets, Strength of Excitation, Note Boundaries.

1. INTRODUCTION

Predominant melody extraction is the task of automatically extract-
ing the fundamental frequency (F0) contour of the dominant musical
instrument in a polyphonic music signal. In a polyphonic music sig-
nal, the dominant musical instrument can be human singing voice
or a lead instrument. The accurate extraction of melody has many
potential applications [1] such as Query by Humming, singer iden-
tification, automatic music transcription, music genre classification,
computational auditory scene analysis and many more. Since the
human singing voice is dominant in most of the polyphonic music
signals, vocal F0 contour extraction is the main objective of this pa-
per.

In literature, we can find two major approaches to derive the
melody of a music signal viz. Source separation and Salience based
methods. Source separation based methods extract the F0 contour
of the melody source by separating it from rest of the music signal
by modelling melody source and the accompanied instruments sep-
arately [2, 3, 4, 5]. On the other hand, melody contour is extracted
by estimating the pitch salience of the composite signal over time in
salience based methods. Then, F0 tracking algorithms are applied on
the estimated salience to obtain melody contour of the predominant
melody source. Salience based methods mostly differ by the way
the salience function is computed, salience peaks are estimated and
the melody contours of the dominant source created by pitch track-
ing methods [6, 7, 8, 9, 10]. For a detailed review on salience and
source separation based methods Ref. [1].

In this paper, we propose a filtering based method to extract vo-
cal melody from polyphonic music signals. In this work, the band-
pass filtering nature of the zero frequency filtering (ZFF) method is
exploited to extract the instants of significant excitation (epochs) or
Glottal closure instants (GCI) of the vocal melody source from mix-
ture signal. Originally, ZFF is proposed to extract the F0 contour of
the monophonic speech signal by filtering it with a zero frequency
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Fig. 1. Block diagram illustration of the proposed melody extraction
method.

resonator (ZFR) followed by designing a narrow bandpass like filter
in time domain with center of frequency equal to the average pitch
period of the speaker. The same method cannot be applied for the
music signal because of the composite nature of the signal consist-
ing of many pitched sources. Also the pitch of the lead voice varies
significantly from one note to the other. Hence, a single filter with
center of frequency equal to the average pitch period is not sufficient
to obtain the accurate F0 of the lead voice from the entire music sig-
nal. To overcome these limitations, the polyphonic music signal with
lead voice is segmented into voiced note like regions by identifying
the note onsets. For each identified note, a representative average
pitch period is obtained by Two-Way Mismatch (TWM) algorithm.
Then each note is filtered adaptively by designing time domain band-
pass filter with center of frequency corresponding to the representa-
tive pitch period to obtain the melody F0. Initially, the voiced and
unvoiced regions are obtained by thresholding the strength of exci-
tation (SoE) contour obtained by the ZFF signal.

The rest of the paper is organized as follows: The proposed
melody extraction method is presented in Section 2. Evaluation and
discussion of the results are presented in Section 3. Summary of the
work and the possible future directions are presented in Section 4.

2. SPECTRO-TEMPORAL APPROACH TO MELODY
EXTRACTION

The sequence of steps present in the proposed melody extraction
method is illustrated in the form of a block diagram as shown in
Fig. 1. The significance of each block is briefly explained in subse-
quent sections.

2.1. ZFF as a Bandpass Filter

A method to extract F0 from monaural speech signal by identify-
ing epoch locations or instants of glottal closures (GCI) is presented
in [11]. The method involves passing the speech signal through the
cascade of two marginally stable, two pole, ideal digital filters res-
onating at Zero Hz (ZFR). Hence the resultant output is the polyno-
mial function of time having exponential growing or decaying trend.
In order to extract the epoch locations from the large values of fil-
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Fig. 2. Illustration of bandpass filtering nature of ZFF. The time
domain waveforms of a segment of vowel, cascaded ZFR output,
and the ZFF signal are shown in (a), (b) and (c) respectively. The
corresponding spectrum of vowel, frequency-response magnitude of
ZFR and ZFF signal are shown in (d), (e) and (f) respectively. The
downward arrows in (a) and (c) represents the GCI.

tered output, each sample of the filtered output is subtracted by the
running mean computed over a window of size equal to the aver-
age pitch period of the speech utterance considered. The instants of
positive zero crossings of the mean subtracted signal (ZFF signal) is
attributed to the locations of the impulse like excitation called epochs
or GCI.

The time and frequency domain interpretations of the ZFF op-
erations is presented in Fig. 2. A segment of synthetic vowel /a/,
the output of the cascaded resonators and the ZFF signal are shown
in Fig. 2(a), (b) and (c) respectively. The spectrum of vowel, cas-
caded ZFR log-magnitude response and spectrum of ZFF signal are
shown in Figs. 2(d), (e) and (f) respectively. From the log-magnitude
frequency-response of ZFR in Fig. 2(e), we can observe that the ZFR
has mostly de-emphasised spectral information related to vocal tract
and leaving behind a very significant emphasis at the Zero Hz. Also,
from the spectrum of ZFF signal in Fig. 2(f) we can observe a strong
peak around the region of pitch frequency. This effect can be at-
tributed to the narrow bandpass (resonator like) filtering nature of
mean subtraction window on the input speech signal.

2.1.1. Limitation of ZFF on music signals

In the original ZFF method, the signal used for extracting the F0
is the monaural speech signal consisting of single excitation source.
Hence, time domain autocorrelation function is used to obtain the
average pitch period to design the mean subtraction filter. On the
other hand, music signal is a composite signal consisting of many
pitched sources. Finding the resonant frequency or the average pitch
period of the singer cannot be accomplished by using autocorrela-
tion function. Also, ZFR is a marginally stable filter with two poles
on the unit circle. Hence ZFF cannot be applied for the entire music
signal considered because of the overflow due to finite precision of
representation when representing exponential trend of the ZFR out-
put. Furthermore, in the rendition of music signal, the pitch of the
singer changes significantly from one note to the other note. Hence,
it is not possible to use a single mean subtraction filter to derive the
melody of the entire music signal. To support the above discussion,
an excerpt of polyphonic music signal with note sequences which
are rendered in ascending order and covering an octave is shown
in Fig. 3. The waveform of the music excerpt is shown in Fig. 3(a),
the corresponding spectrogram and the overlaid melody ground truth
(blue contour) is shown is Fig. 3(b). The melody contours obtained
by the original ZFF method (blue contours) with the mean subtrac-
tion window length set to the average pitch period calculated from

Fig. 3. Illustration of the limitation of the original ZFF on the music
signal. (a) Music excerpt of note sequences covering an octave from
204Hz to 430Hz. (b) Spectrogram and the overlaid ground truth
melody (blue contour). (c) Melody line obtained by original ZFF
(blue contor) and the ground truth (red contour).

the autocorrelation function (which is about 5.7ms) and the ground
truth (red contours) is shown in Fig. 3(c). The melody contour ob-
tained by original ZFF method is shifted below 50Hz with respect to
the ground truth for illustrative purpose. From Fig. 3(c) we can ob-
serve that the melody obtained from ZFF method from around 0.2s
to 0.85s (i.e. first three notes) is intact with the ground truth. From
fourth note onwards (around 0.95s onwards) we can observe that
the ZFF is tracking spurious melody by tracking higher and lower
octaves. Also from Fig. 3(c) we can observe that ZFF has accu-
rately extracted the first three notes even though the resonance fre-
quency which is supplied to the mean subtraction filter is equal to
the frequency of neither of the notes. Hence, this property of ZFF
which extracts the accurate melody even though the supplied reso-
nance frequency is significantly away from the actual frequency of
the melody, we call it as invariance property.

2.1.2. Invariance property of ZFF

In the previous subsection, we have introduced the invariability prop-
erty of the ZFF. Here, we discuss the range of frequencies for which
the ZFF is invariance with the help of spectrogram and the obtained
melody contours. An excerpt of polyphonic music signal with com-
plex melody modulation (from 0.4s-1.01s) is shown in Fig. 4. The
waveform of the excerpt and the corresponding spectrogram with
overlaid melody ground truth (blue contour) is shown in Fig. 4(a)
and (b) respectively. ZFF is applied for the considered music seg-
ment (which has 5.8ms average pitch period) with the mean sub-
traction filters designed between 4ms to 7ms pitch period in-steps
of 0.1ms. The corresponding melody contours for the selected pitch
periods are shown in Fig. 5. Form Figs. 5(b), (c), (d) and (e), we
can observe that the extracted melody contours exactly follows the
ground truth starting from pitch period 4.5ms-6.5ms which spans
approximately two pitch periods. In other words, we can accurately
extract the melody from ZFF even if the supplied resonance pitch
period (or frequency) of the mean subtraction filter is significantly
away from the melody of the signal i.e., we have a greater flexibility
of choosing the resonance frequency of the narrow bandpass filter
for obtaining accurate melody.

2.2. Detection of Voiced and Unvoiced Segments

In Subsection 2.1 it is shown that the vocal source signal which is the
impulsive excitation to the vocal tract system is emphasized in mag-
nitude by passing the signal twice through the ZFR resonating at
Zero Hz. Passing the signal twice through the ZFR has mostly atten-
uated the vocal tract resonances and hence significantly emphasized
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Fig. 4. An excerpt of a polyphonic music signal considered to
show the invariance of the ZFF for a band of selected resonance
frequencies. (a) Waveform of the music excerpt having complex
melody modulation (0.4s-1.01s), (b) Spectrogram and the melody
ground truth (blue)

Fig. 5. Illustration of the invariance property of the ZFF for music
excerpt considered in Fig.4 having a mean pitch period of 5.8ms
in the singer modulation region from 0.4s to 1.01s. The output of
the ZFF for various centre of frequencies shown in for (a) 4ms, (b)
4.5ms, (c) 5.4ms, (d) 5.9ms and (e) 6.5ms respectively.

the source signal. In a polyphonic music signals with lead voice, it
is the vocal source which is mostly dominant when compare to the
other sources. Hence by exploiting the strength of excitation (SOE)
of the source signals, the vocalic regions can be identified. Initially,
the composite signal is zero frequency filtered with a window size of
1ms (1000Hz). The window size of 1ms is chosen since it covers the
entire frequency range of the vocal source. The ZFF allows a com-
posite source signal which is the sum of the sources i.e., vocal source
and the sources of the other instruments. Because of the dominance
property of the vocals, the ZFF signal has high energy in the voiced
regions and very low energy in the unvoiced regions. The strength
of excitation contour is obtained as the slope of the ZFF signal at the
instants of zero crossings of the ZFF signal. SoE is passed through
the Savitzky-Golay filter of order 3 and window size of 31 samples
to obtain the smoothed envelope.

An excerpt of a polyphonic music signal, its spectrogram, spec-
trogram of the ZFF signal and smoothed SoE with overlaid detected
voiced boundary markers is shown in Fig. 6. From Fig. 6(c) we can
observe the increased energy of the ZFF signal of Fig. 6(a) in the
harmonics of the source signal when compared to the original spec-
trogram of Fig. 6(b). Though the energy in other parts of the spec-
trogram is also increased but it is not predominant as compared to
the energy of the harmonic of the source signal. Furthermore, from
Fig. 6(d), we can observe a large threshold range available for voiced
and unvoiced (VUV) decision. The mean µSoE and standard devia-
tion σSoE of the smoothed SoE is computed. A threshold based on
statistical measure µSoE - δ ∗σSoE is computed for VUV classifica-

Fig. 6. Illustration of the effect of ZFR on composite music signal.
(a) Music excerpt, (b) the Corresponding spectrogram, (c) Spectro-
gram of ZFF signal and (d) SoE contour and voiced segment markers
(vertical markers).

tion. Where δ is the deviation parameter, an optimum value of 0.95
is chosen to reduce false alarms.

2.3. Detection of Voiced Note Onsets

The fundamental frequency of the melody source varies significantly
from one note to other. Hence, a single mean subtraction filter is not
sufficient to remove the trend in the ZFR output to obtain the ac-
curate F0 of the lead voice from the entire music signal. To over-
come this limitation, the voiced segments identified in the previ-
ous subsection are further segmented into voiced note like regions
by identifying note onsets. An onset can be defined as an event
in a music signal where the signal properties such as short time
energy, spectral magnitude, phase spectrum etc., shows significant
changes [12, 13, 14, 15, 16]. Music signal with lead voice consists
of both hard and soft onsets. The hard onsets are characterised by
high frequency energy, therefore the linear frequency weighted en-
ergy content analysis for the sub-band spanning from 1KHz-10KHz
is applied. Then the onset detection function is obtained by the
derivative of the energy function which showed sharp peaks at the
instants of note onsets.

On the other hand, the soft onsets are characterised by changes
in the frequency content specifically at lower frequency band span-
ning 50Hz-1.5KHz. Hence, a method similar to [17] is followed to
determine the soft onsets. To determine the spectral changes, Eu-
clidean distance between the spectral frames is measured as

Edm(n) =
∑

k;EX (n,k)>0

EX(n, k)2 (1)

where
EX(n, k) = X(k, n)−X(k, n− 1) (2)

The distance measure is normalized to detect soft onsets along
with hard onsets given by

Edm(norm)(n) =
Edm(n)∑f2

k=f1 |X(k, (n− 1))|2
(3)

To suppress the noisy regions in the detection functions which
leads to multiple onset detection without blurring the position of on-
sets and smoothing weaker onsets. In time domain, a low pass filter-
ing is performed by taking the difference between the current frame
and the contribution of exponentially weighted previous frames of
detection function, given by

y(n) = F (n)−
A∑

a=1

F (n− a)
a

(4)

where F (n) represents the onset detection functions determined pre-
viously for soft and hard onsets and a is the weighting factor. The
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Fig. 7. Illustration of the onset detection functions of a polyphonic
music signal. (a) Waveform (b) Spectrogram, (c) and (d) Hard and
Soft onset detection functions and (e) Combined and smoothed onset
detection functions of (c) and (d).

filtered onset detection functions are combined and the location of
onsets are obtained by peak picking heuristics as follows: The nth

frame is considered as onset if the onset detection function fulfils the
following conditions

y(n) = max(y(n− w)) (5)
y(n) >= mean(y(n− w : n+ w)) + δ (6)

n− nlastonset > w (7)

The optimal values for parameters w, δ and A are chosen as 3,
0.05 and 20 respectively. The hard, soft and the combined smoothed
onset detection functions of an excerpt of polyphonic music signal
are shown in Fig. 7. From Fig. 7(c) we can observe that the spikes in
the detection function corresponds to the vertical ridges in the spec-
trogram which are hard onsets resultant of the wideband spectral en-
ergy. The spikes in the Fig. 7(d) which corresponds to both hard and
soft onsets which are due to the normalized low frequency spectral
changes. The smoothed combined detection functions in Fig. 7(e)
shows almost zero noise variance which in-turn helps in picking the
low energy peaks of soft onsets.

2.4. Resonance Frequency Detection and Adaptive Filtering

To obtain the melody of lead voice in the polyphonic music signal,
the trend in the output of the ZFR of each note segment should be
removed adaptively with the mean subtraction window length corre-
sponding to the average pitch period of the lead voice in the segment
considered. Since the polyphonic music signal consists of several
pitched instruments, the average pitch period of voice source in a
note segment is obtained by TWM error function [18]. TWM error
function is designed to find the F0 of the given signal by minimiz-
ing the error between the measured partial peaks and the predicted
harmonics. The measured partial peaks are obtained from short time
Fourier transform (STFT) with 40ms frame size and 3ms frame shift
by sinusoidal detection proposed in [19]. The sinusoids in a STFT
frame are determined by measuring the mean squared error differ-
ence between measured spectral peak’s shape and the spectrum of
the analysis window main lobe. Then the probable (predicted) F0
candidates for TWM are obtained as the sub-multiples of measured
sinusoids. The F0 search range is limited to 50Hz-1KHz assuming
that voice F0 will remains in this range. The representative pitch pe-
riod of a note segment is obtained as the reciprocal of the average of
F0 candidates for which the TWM error is minimum.

Finally, Zero frequency filtering is performed on each identified
note segments separately with the trend removal window designed
with the average pitch period of the corresponding note segment.
The instants of zero crossings of all note segments which represents

the GCI’s are obtained and the inverse of the difference between
successive GCI’s are computed to obtain the melody of lead voice.

3. EVALUATION AND DISCUSSION
The proposed melody extraction method is evaluated using three
openly available datasets which includes music excerpts and the cor-
responding F0 ground truth in the form of time-frequency pairs:
ADC2004, Mirex05TrainFiles and MIR-1K dataset are considered
for evaluation. Which consists of 20, 13 and a subset of 280 ex-
cerpts and each having duration between 7-40s in the genres of pop,
jazz, opera, rock, solo classical piano sung by both male and female
singers. The four global measures provided in MIREX 2005 [20]
are used for evaluating the proposed method: Voicing Recall Rate
(VR), Voicing False Alarm Rate (VFA), Raw Pitch Accuracy
(RP) and Overall Accuracy (OA). The performance of the proposed
method is compared with widely used and openly available salience
based melody extraction system Melodia1 [10] as shown in Table 1.
From Table 1 we can observe that the performance of the proposed
method is comparable with that of Melodia. A slight decrease in the
VFA of the proposed method is observed. It can be attributed to the
large dynamic range of the SoE contour for threshold even in the re-
gions of the music signal where the strengths of accompaniment and
the vocals are comparable. Hence the increase in VR, RP and OA
performance for both ADC2004 and Mirex05TrainSet. A decrease
in overall accuracy of the proposed method is observed in the MIR-
1K dataset this is due to the tracking of the higher octaves in the
regions of strongly excited percussive regions. Presently, the perfor-
mance of the proposed method is comparable to that of the Melodia,
but the performance can be significantly improved by preprocess-
ing the music signal to suppress the percussion component. Due to
the time-frequency uncertainty of the STFT, the note onsets and off-
sets are either detected later or earlier then the true locations which
in turn contributed to the performance accuracy. Also, the perfor-
mance of the proposed method is significantly affected by the reso-
nance frequency of the mean subtraction filter which is sometimes
detected beyond the invariance range by TWM algorithm. More
results of extracted melody (including the failure cases) on vari-
ous polyphonic music signals are provided at https://github.
com/mgurunathreddy/Melody-extraction-results.

Table 1. Performance comparison of proposed (P) method and
Melodia (M).

Dataset VR VFA RP OA
P M P M P M P M

ADC2004 0.81 0.79 0.18 0.21 0.78 0.75 0.74 0.72
Mirex05TrainSet 0.80 0.77 0.19 0.23 0.73 0.69 0.70 0.67
MIR-1K 0.79 0.89 0.22 0.19 0.77 0.84 0.76 0.82

4. SUMMARY AND CONCLUSIONS
A mixed time and frequency domain melody extraction method is
proposed by exploiting the bandpass filtering nature of the ZFF. The
voiced and unvoiced regions of the polyphonic music signal are de-
tected by thresholding SoE contour. The voiced note like segments
are obtained by detecting note onsets. Finally, the melody contour
is extracted by filtering each voiced note segment with adaptive zero
frequency filtering. The initial results obtained from the proposed
method are comparable to that of the state of the art melody extrac-
tion system which is really encouraging to improve the accuracy of
the proposed method in near future. Also we would like to com-
pare the proposed method with other salience and source separation
methods with larger datasets.

1http://www.mtg.upf.edu/technologies/melodia.
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