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ABSTRACT

Separating the singing from a polyphonic mixed audio signal is a chal-
lenging but important task, with a wide range of applications across
the music industry and music informatics research. Various meth-
ods have been devised over the years, ranging from Deep Learning
approaches to dedicated ad hoc solutions. In this paper, we present
a novel machine learning method for the task, using a Conditional
Random Field (CRF) approach for structured output prediction. We
exploit the diversity of previously proposed approaches by using
their predictions as input features to our method – thus effectively
developing an ensemble method. Our empirical results demonstrate
the potential of integrating predictions from different previously-
proposed methods into one ensemble method, and additionally show
that CRF models with larger complexities generally lead to superior
performance.

Index Terms— Singing voice separation, conditional random
fields, ensemble method

1. INTRODUCTION

1.1. Background

Singing Voice Separation (SVS) is the task of deconstructing an audio
mixture containing several sources into two components: the sung
melody (the vocals) and everything else (the background). The task
is commonly approached in the time-frequency domain. First, a
spectrogram is computed using the Short-Time Fourier Transform
(STFT) of the mixed audio signal. The resulting spectrogram image
is a matrix where the horizontal axis represents time, the vertical
axis represents frequency and the amplitude of a particular (time,
frequency) pair is indicated by the intensity of the corresponding pixel
in the image. Then, a typical SVS algorithm will classify each pixel in
the spectrogram as belonging to either the vocals or the background.
This results in a binary/hard mask: a matrix of the same dimensions
as the spectrogram which contains a 1 whenever the energy at the
corresponding pixel is deemed to be due to vocals, and a 0 when it is
deemed to be due to the background. Some methods take a less rigid
approach and determine for each pixel the proportion of the energy
at the corresponding time and frequency that is ascribed to the vocals
and to the background. Such methods result in a continuous/soft mask,
which contains values in the range [0, 1] representing the predicted
proportions, rather than binary values [1]. Given either type of mask,
it is then possible to reconstruct the time-domain signal of both vocals
and background, simply by element-wise multiplying the spectrogram
with either the mask (for the vocals) or 1 minus the mask (for the
background) and computing the inverse STFT of the result.
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Fig. 1. Conditional Random Fields for singing voice separation. A
feature vector xf,t is computed for each pixel in a spectrogram. This
alone can be used to classify Yf,t as either vocal (shown here in
white) or non-vocal (black). However, we may also make use of the
neighbours of Yf,t to assist with prediction.

It is important to point out that the masking approach is po-
tentially imperfect and may not yield optimal SVS results. Indeed,
metrics used for evaluating the quality of the output of an SVS ap-
proach are complex and do not rely on the masking assumption, such
that even the true mask may be imperfect according to these metrics.

1.2. Machine learning approaches to SVS

Several recent methods have adopted a machine learning approach
in order to train the algorithm for predicting the mask. Such strate-
gies require a training dataset containing the spectrogram along with
the ground-truth mask for a sufficiently large set of songs. How-
ever, creating such annotations is clearly non-trivial and extremely
challenging to do by hand.

Recently, researchers have created an automated approach for
extracting a ground-truth mask, referred to as the ‘Ideal Binary Mask’
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(IBM)[2], based on the separate spectrograms of the vocals and the
background. This approach takes the element-wise maximum of the
magnitude spectrum of vocal and background audio tracks. Besides
their use in training, IBMs are also useful for evaluating on hold-
out sets or using cross-validation techniques. Furthermore, they are
useful in upper bounding the performance of any masking approach.

1.3. Paper structure

The remainder of this paper is arranged as follows. In Section 2 we
review the literature relevant to SVS. Section 3 introduces our models,
which are evaluated in Section 4. We conclude in Section 5.

2. RELATED WORK

Many existing approaches for SVS are based on matrix decompo-
sition techniques applied to magnitude spectrograms. Examples
include Independent Component Analysis [3], Robust Principal Com-
ponent Analysis [4], harmonic-percussive source separation [5] and
dictionary learning [6]. In contrast to these methods, an alternative
approach is to track the sung melody more directly, by estimating
the f0 (fundamental frequency) of the estimated vocal melody, and
reconstructing a binary mask from the f0 trajectory alongside a num-
ber of its harmonics [7]. Also related to our work is the research by
Lagrange et al. [8], who use a graph-cutting algorithm to divide a
binary mask into vocal and non-vocal segments. The most recent
developments in this area include Deep Learning approaches [9, 10],
online real-time methods [11] and the REPET system [12].

The recent publication of publicly-available datasets such as
the MIR1k dataset [13] and iKala dataset [14], have also helped
benchmark algorithms. For example, the authors of the iKala dataset
also held back a set of songs for testing within the MIREX (Music
Information Retrieval Evaluation eXchange) 2014 Singing Voice
Separation task1, which featured 11 algorithms from 8 different teams.

The use of Conditional Random Fields (CRFs) to model mu-
sic is not novel as such. CRFs are a powerful probabilistic frame-
work, particularly well-suited to music information retrieval as they
can effectively learn from sequential data. They determine a map-
ping from a sequence of feature vectors, including overlapping and
non-independent features, to a sequence of labels. CRFs have been
successfully applied to several music informatics tasks such beat
tracking [15], audio-to-score alignment [16] and the modelling of
musical emotions over time [17].

Conditional Random Field approaches have been used particu-
larly extensively in machine vision applications (e.g. [18]), as well
as in other areas of audio, speech, language and music analysis
[19, 20, 21, 22]. Given the similarity between visual object recog-
nition and SVS, they are thus a natural choice.2 With respect to
ensemble methods, Le Roux et al. [23] used a similar approach to
our own when addressing the related task of speech enhancement.

2.1. Contributions

In this paper, we present a sequence of models of increasing com-
plexity which aim to predict a binary mask given a spectrogram.

1http://www.music-ir.org/mirex/wiki/2014:
Singing_Voice_Separation

2Note that the term CRF is used slightly abusively in this community, for
structured output prediction methods that model just pairwise dependencies
between atomic labels; we adopt the same abuse of terminology—in fact our
CRF methods are trained using a maximum margin approach.

Underlying each of these methods is the idea that each pixel is asso-
ciated not with a single value but with a set of features collected in a
feature vector. These sets range from simple low-level features of the
spectrogram to high-level features, such as the values of the predicted
masks developed using previously-propsed methods. As such, our
proposal effectively represents a type of ensemble method.

Our baseline model classifies each pixel independently using lo-
gistic regression. This simple approach does not exploit dependencies
between nearby pixels in the mask. Indeed, vocal activity is likely
to vary slowly over time (far slower than the frame rate of a spectro-
gram), and is not likely to occupy a single frequency band (see Figure
1). To exploit this, our subsequent models make use of Conditional
Random Fields to encode our assumptions: the first model includes
dependencies between time-adjacent entries of the mask, while the
second model considers frequency-adjacent nodes. Finally, in the
third model, both dependencies are accounted for.

3. PROPOSED METHODS

The approach proposed in this paper is based on binary mask learning.
In particular, we seek a function which maps the spectrogram of a
mixed music audio signal to a binary mask, which labels each pixel
in the spectrogram as 1 (vocal) or as 0 (background).

The baseline approach we propose is to simply classify each
pixel in the spectrogram into vocal or background, based on a feature
representation of the pixel. This approach disregards the dependen-
cies between neighbouring pixels so to exploit these dependencies
we investigate structured output prediction approaches which do not
aim to predict the label of each pixel in isolation, but rather aim to
predict the entire binary mask (or large chunks of it) at once. Models
of varying complexities are therefore developed, according to the
dependencies considered.

We begin this section with a description of the features we com-
puted for a spectrogram, which will remain constant over all ex-
periments outlined in this paper. We will then present the different
classification approaches considered.

3.1. Feature extraction

Let X ∈ RF×T
+ represent a magnitude spectrogram for an audio

mixture with F frequency bins and T time frames. From this spectro-
gram, we computed different features that we considered of potential
relevance to our task.

Sparse component of Robust PCA Robust Principal Compo-
nent Analysis [24, 4] is a variant of PCA which aims to decompose
the matrix X into a low-rank term and a sparse term S ∈ RF×T

+ .
As the singing voice is less regular and more sparsely present in the
spectrogram than the instrumental accompaniment, we included the
sparse component (setting the L1 weight penalty equal to the default
1/

√
max(F, T )) as a feature. Harmonic component We split X

into its harmonic and percussive components using a median filtering
approach [25], keeping the harmonic component H ∈ RF×T

+ as a
feature. Gabor filtered spectrogram Inspired by image processing
where they have proven useful in a variety of tasks, we also included
4 Gabor filtered spectrograms [26] as features. The filters had rotation
equal to 0, π/4, π/2 and 3π/4 and each had horizontal bandwidth
equal to 1 and vertical bandwidth equal to 3 (empirically selected
to attain a reasonable output on musical spectrograms). The log
power of the pixel log10(X(f, t)), as the power can be expected to
be higher where the sung voice is present (in logarithmic scale to
mimic the human auditory system). The frequency f of the pixel
itself as the vocal activity has clear frequency biases.

451



NSDR SIR SAR

Method Voice Music Voice Music Voice Music

REPET 7.91± 3.30 5.78± 3.49 8.36± 9.25 15.59± 5.14 9.34± 2.62 9.38± 2.68
Deep 3.72± 1.35 −0.04± 5.23 1.62± 5.86 18.75± 4.95 7.98± 2.84 7.97± 2.84
Independent 7.08± 2.59 3.86± 4.41 9.59± 8.57 18.28± 5.00 6.15± 3.58 6.19± 3.63
Time 9.26± 3.64 5.80± 3.53 17.21± 9.65 16.46± 5.58 6.51± 3.43 6.55± 3.47
Frequency 9.16± 3.62 5.71± 3.54 16.95± 9.62 16.44± 5.60 6.44± 3.44 6.47± 3.47
4-connected 9.30± 3.62 5.82± 3.45 17.19± 9.54 16.12± 5.54 6.54± 3.41 6.58± 3.46

Ideal Binary Mask 17.14± 3.39 12.80± 3.63 31.21± 3.70 27.50± 3.93 13.33± 3.48 13.37± 3.51

Table 1. Normalised Source to Distortion Ratio (NSDR), Source to Interferences Ratio (SIR), Sources to Artifacts Ratio (SAR) for our
experiments. All results are measured in dB relative to the true mix and show mean and standard deviation of performance over all test songs.
Best results in each column are shown in boldface.

These features have been used either directly in SVS or in related
tasks. An additional set of features which are also no doubt informa-
tive, are the per-pixel predictions of existing SVS algorithms. We
therefore included the predictions of two state-of-the-art and comple-
mentary existing systems on X as two extra features (both of which
output a soft mask the same dimensions as X): REPET REpeating
Pattern Extraction Technique [12]3 and The Deep Learning system
for SVS [27]4. The features above were finally concatenated into
a 10−dimensional feature vector (S, H, 4 Gabor filter outputs, log
power, frequency, REPET output, Deep Learning output).

3.2. Classification techniques

3.2.1. Independent model

Our first approach is simply to learn a logistic regression model from
the feature space to {0, 1}. An L2 norm penalty was specified with
the intercept additionally fitted. In the test phase, each pixel in the
spectrograms was then predicted independently, leading us to refer to
this method as Independent.

3.2.2. Modelling time dependencies

Vocal activity within a spectrogram is likely to be non-stationary,
meaning that we may gain performance by allowing time-adjacent
pixels to affect the likelihood that a certain pixel contains vocal energy.
Thus, we trained a CRF model in which the hidden nodes correspond
to the elements in the binary mask, and the hidden graph structure
over these nodes consists of a set of chains across time, one for each
frequency. Edges within the model were specified to be undirected
and learning was then conducted using the block co-ordinate Frank-
Wolfe algorithm [28]. We refer to this model as Time.

The regularisation parameterC was roughly tuned on a small sub-
set of the data, after which it was set to 10−7 across all experiments –
further optimisation using cross-validation is computationally very
challenging but may yield improvements in performance.

3.2.3. Modelling frequency dependencies

With similar motivation to the above Time model (vocal frequencies
will typically occupy more than one frequency band in a spectrogram),
we also trained a CRF with dependencies between nodes representing

3http://www.zafarrafii.com/codes/repet_sim.m
4https://github.com/posenhuang/

deeplearningsourceseparation

frequency-adjacent mask elements. This model was set up in exactly
the same way as 3.2.2 and we refer to it as Frequency.

3.2.4. Modelling both time and frequency dependencies

A natural extension of the models above is to model the horizontal axis
(time) and the vertical axis (frequency) dependencies simultaneously.
This flexibility gives CRFs a distinct advantage over simpler graphical
models such as Hidden Markov Models. The graph structure in this
model was set such that each node was connected to its immediate
neighbours above, below, to the left and right.

Although exact inference methods are known for grid models
such as these, we found that they were too computationally expensive
for our purpose. We therefore used the same approximate learning
method as in the two previous methods - Time and Frequency.
We refer to this final model as 4-connected.

4. EXPERIMENTS

4.1. Description of the dataset

The dataset for this work consisted of the publicly-available subset
of the iKala dataset which consists of 252 30-second clips of chinese
pop/rock music5. Each audio example contains two channels: one
containing the vocals and the other containing the background. A
magnitude spectrogram for each of these channels was computed,
resulting in two spectrograms, V,B ∈ RF×T

+ . An ideal binary mask
was then computed via element-wise comparison of V with B:

IBMf,t =

{
1 if Vf,t > Bf,t

0 otherwise.

These masks were then used as the ground truth labels for training
our method, as well as giving an upper bound on the performance.

4.2. Setup of the experiments

To ensure compatibility with the Deep Learning method (one of our
features as outlined earlier), audio was downsampled to 16kHz. The
loudness of the vocals in each song was set to be equal (0dB) to the
background. Spectrograms were computed with a window length
of 1024 samples with a hop of 256 frames. Audio processing was
conducted using librosa [29] and sci-kit image [30] (for the Gabor
filters). Classification was performed using scikit-learn [31] and

5http://mac.citi.sinica.edu.tw/ikala/

452



PyStruct [32]. Evaluation was performed using the BSS-toolbox [33].
Audio was upsampled back to the native 44kHz before evaluation to
avoid interefereence from any signal processing artifacts.

Evaluation was conducted using 10−fold cross validation, with
25 of the 252 songs in each fold held out for testing. Unfortunately,
memory constraints made it impossible to make use of the full re-
maining 90% of songs for training in each fold: we therefore decided
to sample just 25 songs at random from the training set (note that
the same random set was used across all different methods). This
means that the reported performances of the newly proposed methods
are likely to be underestimates of what can be achieved using more
working memory, or with a parallel implementation (which will be
the subject of our future work).

4.3. Results and discussion

The most common metrics for evaluating blind audio source separa-
tion methods (of which SVS can be considered a subfield) are the
SDR (Signal to Distortion Ratio), SIR (Source to Interference Ratio),
and SAR (Source to Artifacts Ratio) [33]. We used these metrics to
measure the efficaciousness of our methods, accounting for the levels
in the true mix as suggested by the MIREX team6. Results are shown
in Table 1, where in addition to the four proposed methods, we also
show the performance of REPET and the Deep Learning system, as
well as the performance of the ideal binary mask.

The first two rows in Table 1 represent existing systems which
attain between 3.72 and 7.91dB NSDR for the sung voice and up
to 5.78dB for the musical accompaniment. The remaining rows are
ordered in terms of increasing model complexity. In general, our
methods offer an improvement in terms of NSDR, with the more
complex models (Time, Frequency, 4-connected) achieving
superior performance. Further improvements could be expected for
the more complex models if we were able to use more of our training
data. Our models also perform well with respect to SIR, especially
in relation to the voice. In terms of SAR, we fall short of the score
attained by REPET - this could a consequence of the binary mask
introducing artifacts.

An example of the output of our system is shown in Figure
2. Note that although the outputs for REPET and our proposed
4-connected model appear similar, in this example we achieved a
increase in NSDR of more than 7dB for the sung voice over REPET.
We refer the reader to our website for audio examples 7.

A statistical analysis of the methods revealed that, although the
magnitude of improvement across methods is small, in most cases
it was significant to a high level. In particular, our best-performing
method in terms of NSDR on the sung voice, 4-connected, was a
significant improvement over all other methods, with p−values all
below 10−4 using the Wilcoxon signed-rank test.

4.4. MIREX Evaluation

To evaluate our methods more directly against cutting edge systems,
we also submitted our algorithm to the 2015 MIREX SVS task which
contained audio clips unavailable to participants. In this setting, our
algorithm slightly underperformed compared to systems by other
teams. However, no algorithm outperformed any other when variance
across test songs was taken into account.

6http://www.music-ir.org/mirex/wiki/2015:
Singing_Voice_Separation#Evaluation

7http://www.interesting-patterns.net/ds4dems/
vocal-source-separation/

Fig. 2. Example output from our system. From top to bottom: log
power spectrogram of mixture, Deep Learning system, REPET sys-
tem, our proposed method (4-connected model), Ideal Binary
Mask. In all images white indicates high energy.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an ensemble method for Singing Voice
Separation. Using a combination of simple low-level features, matrix
decomposition techniques, and the output of existing systems, we
learnt a hard mask from the feature space to a {vocal, non-vocal}
label space. Experimenting on publicly-available data, we achieved
an increase of ∼ 1.25dB NSDR relative to an existing methods. In
terms of SIR, we made a larger gain of almost 9dB. Our algorithm
was also submitted to the Music Information Evaluation eXchgange
for evaluation against competing methods on held-out test audio.

For future work we would like to try an 8-connected grid (includ-
ing diagonal neighbours), and investigate if more scalable methods
would allow us to exploit more of the available training data. Other
interesting potential avenues of future research include adding links
between harmonically related nodes, and thoroughly investigating
the relevance of the individual features we used.
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