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ABSTRACT

Harmonic-percussive-residual (HPR) sound separation is a use-
ful preprocessing tool for applications such as pitched instrument
transcription or rhythm extraction. Recent methods rely on the
observation that in a spectrogram representation, harmonic sounds
lead to horizontal structures and percussive sounds lead to vertical
structures. Furthermore, these methods associate structures that are
neither horizontal nor vertical (i.e., non-harmonic, non-percussive
sounds) with a residual category. However, this assumption does not
hold for signals like frequency modulated tones that show fluctuating
spectral structures, while nevertheless carrying tonal information.
Therefore, a strict classification into horizontal and vertical is in-
appropriate for these signals and might lead to leakage of tonal
information into the residual component. In this work, we propose
a novel method that instead uses the structure tensor—a mathemat-
ical tool known from image processing—to calculate predominant
orientation angles in the magnitude spectrogram. We show how
this orientation information can be used to distinguish between har-
monic, percussive, and residual signal components, even in the case
of frequency modulated signals. Finally, we verify the effectiveness
of our method by means of both objective evaluation measures as
well as audio examples.

Index Terms— Harmonic-Percussive-Residual Separation,
Structure Tensor, Spectrogram, STFT

1. INTRODUCTION

Being able to separate a sound into its harmonic1 and percussive
component is an effective preprocessing step for many applications.
Using the separated percussive component of a music recording for
example can lead to a quality improvement for beat tracking [1],
rhythm analysis [2] and transcription of rhythm instruments. The
separated harmonic component is suitable for the transcription
of pitched instruments and chord detection [2, 3]. Furthermore,
harmonic-percussive separation can be used for remixing purposes
like changing the level ratio between both signal components [4],
which may lead to an either “smoother” or “punchier” overall sound
perception.

Recent methods for harmonic-percussive sound separation rely
on the assumption that harmonic sounds have a horizontal struc-
ture in the magnitude spectrogram of the input signal (in time
direction), while percussive sounds appear as vertical structures

1While “Harmonic-Percussive(-Residual) Separation” is a common term,
it is misleading as it implies a harmonic structure with sinusoidals having a
frequency of an integer multiple of the fundamental frequency. Even though
the correct term should be “Tonal-Percussive-(Residual) Separation”, we will
refer to the common term and “harmonic” instead of “tonal” throughout this
paper for easier understanding and coherence with existing work.

Fig. 1. Spectrogram of a mixture of a singing voice, castanets, and
applause with zoomed in region additionally showing direction (ori-
entation of arrows) and anisotropy measure (length of arrows) ob-
tained by the structure tensor. The color of the arrows indicate
whether the respective time-frequency bin is assigned to the har-
monic (red), the percussive (blue), or the residual (green) component
based on the orientation and anisotropy information.

(in frequency direction). Ono et al. presented a method that first
creates harmonically/percussively enhanced spectrograms by dif-
fusion in time/frequency direction [5]. By comparing these en-
hanced representations afterwards, a decision if a sound is either
harmonic or percussive could be derived. A similar method was
published by Fitzgerald, where the enhanced spectrograms were
calculated by using median filtering in perpendicular directions in-
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stead of diffusion [6], which led to similar results while reducing the
computational complexity. Inspired by the sines+transients+noise
(S+T+N) signal model [7, 8, 9]—a framework that aims to de-
scribe the respective signal components by means of a small set of
parameters—Fitzgerald’s method was then extended to harmonic-
percussive-residual (HPR) separation in [10]. As audio signals often
consist of sounds that are neither clearly harmonic nor percussive,
this procedure captures these sounds in a third, residual component.
While some of these residual signals clearly have an isotropic, nei-
ther horizontal nor vertical, structure (as for example noise), there
exist sounds that do not have a clear horizontal structure but never-
theless carry tonal information and may be perceived as harmonic
part of a sound. An example are frequency modulated tones like
they can occur in recordings of violin playing or vocals, where they
are said to have “vibrato”. Due to the strategy of recognizing either
horizontal or vertical structures, the aforementioned methods are not
always able to capture such sounds in their harmonic component.
It is worth noting that a harmonic-percussive separation procedure
based on non-negative matrix factorization that is capable of captur-
ing harmonic sounds with non-horizontal spectral structures in the
harmonic component was recently proposed in [11]. However it did
not include a third residual component.

In this work, we propose a novel approach for HPR separation.
Instead of searching only for strictly horizontal and vertical struc-
tures, our method calculates predominant orientation angles as well
as the local anisotropy in the spectrogram by using the structure ten-
sor known from image processing. The provided information about
the orientation of spectral structures can then be used to distinguish
between harmonic, percussive, and residual signal components by
setting appropriate thresholds, see figure 1.

2. THE STRUCTURE TENSOR ON SPECTROGRAMS

The structure tensor [12, 13] is a well known tool in image process-
ing where it is applied to grey scale images for edge and corner de-
tection [14] or to estimate the orientation of an object. While the
structure tensor has already been used for preprocessing and feature
extraction in audio processing [15, 16], its robust orientation infor-
mation has not been exploited so far in this scope.

We now revisit the mathematical basics of the structure tensor
and interpret it in the context of audio processing. In the following,
matrices and vectors are written as bold letters for notational con-
venience. Furthermore, the (·) operator is used to index a specific
element. In this case the matrix or vector is written as a non-bold
letter to show its scalar use.

2.1. Calculation of the spectrogram

In this work, we apply the structure tensor to the spectrogram rep-
resentation of a discrete input audio signal x ∈ R

M with a sam-
pling frequency of fs. For the spectral analysis of x, the short-time
Fourier-transform (STFT)

X(b, k) :=

N−1∑
n=0

w(n)x(n+Hb) exp (−i2πnk/N) (1)

is used, where X(b, k) ∈ C, b denotes the frame index, k the fre-
quency index and w ∈ R

N is a window function of length N . H ∈
N, H ≤ N represents the analysis hop size of the window. Note that
since the STFT spectrum has a certain symmetry around the Nyquist
point at N/2, we restrict our processing to 0 ≤ k ≤ N/2, as the
symmetry can be reconstructed during the inverse STFT.

Furthermore we calculate the real valued logarithmic spectro-
gram

S(b, k) = 20log10 |X(b, k)| . (2)

2.2. Calculation of the structure tensor

For the calculation of the structure tensor the partial derivatives of
S are needed. The partial derivative with respect to time index b is
given by

Sb = S ∗ d (3)

while the partial derivative with respect to frequency index k is de-
fined as

Sk = S ∗ dT
(4)

where d is a discrete differentiation operator (for example, for cen-
tral differences one could choose d = [−1, 0, 1]/2) and ∗ denotes
the 2-dimensional convolution. Furthermore we define

T11 = (Sb � Sb) ∗G (5)

T21 = T12 = (Sk � Sb) ∗G (6)

T22 = (Sk � Sk) ∗G (7)

where � is the point wise matrix multiplication, also known as the
Hadamard product and G is a 2-D Gaussian smoothing filter having
the standard deviation σb in time index direction and σk in frequency
index direction. The structure tensor T(b, k) is then given by a 2×2
symmetric and positive semidefinite matrix

T(b, k) =

[
T11(b, k) T12(b, k)
T21(b, k) T22(b, k)

]
. (8)

The structure tensor contains information about the dominant orien-
tation of the spectrogram at position (b, k). Note that in the special
case where G is a scalar, T(b, k) does not contain more informa-
tion than the gradient at this position in the spectrogram. However
in contrast to the gradient, the structure tensor can be smoothed by
G without cancellation effects, which makes it more robust against
noise.

2.3. Calculation of angles and anisotropy measure

The information about the orientation for each bin in the spectro-
gram is obtained by calculating the eigenvalues λ(b, k), μ(b, k) with
λ(b, k) ≤ μ(b, k) and the corresponding eigenvectors v(b, k) =
[v1(b, k), v2(b, k)]

T and w(b, k) = [w1(b, k), w2(b, k)]
T of the

structure tensor T(b, k). Note that v(b, k), the eigenvector corre-
sponding to the smaller eigenvalue λ(b, k), is pointing into the di-
rection of lowest change in the spectrogram at index (b, k), while
w(b, k) is pointing in to the direction of highest change. Thus, the
angle of the orientation at a specific bin can be obtained by

α(b, k) = atan

(
v2(b, k)

v1(b, k)

)
∈ [−π/2;π/2] . (9)

In addition, a measure of anisotropy

C(b, k) =

⎧⎨
⎩
(

μ(b,k)−λ(b,k)
μ(b,k)+λ(b,k)

)2

, μ(b, k) + λ(b, k) ≥ e

0 , else
(10)

with e ∈ R
>0 can be determined for each bin. Note that C(b, k) ∈

[0; 1]. Values of C(b, k) close to 1 indicate a high anisotropy of the
spectrogram at index (b, k), while a constant neighborhood leads
to values close to 0. The threshold e, that defines a limit on what
should be considered anisotropic, can be chosen to further increase
the robustness against noise.
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Fig. 2. Range of orientation/anisotropy values computed by the
structure tensor. Values in areas marked in red wavy lines lead to
an assignment to the harmonic component, in blue vertical lines to
the percussive component, and in dotted green to the residual com-
ponent.

2.4. Interpreting the angles and smoothing parameters

The physical meaning of angle α(b, k) can be understood by consid-
ering a continuous signal with a change of instantaneous frequency
Δf during a time interval Δt. Thus the instantaneous frequency
change rate R is denoted by

R =
Δf

Δt
. (11)

Considering sample rate, length and hop-size of the applied STFT
analysis, a relation between the angles in the spectrogram and the
instantaneous frequency change rate R(b, k) for each bin can be de-
rived by

R(b, k) =
fs

2

HN
· tan(α(b, k)). (12)

Also the standard deviations of the smoothing filter G in the dis-
crete domain σb and σk can be converted to the continuous physical
parameters σt and σf by

σt =
H

fs
σb, σf =

fs
N

σk. (13)

3. HARMONIC-PERCUSSIVE-RESIDUAL SEPARATION
USING THE STRUCTURE TENSOR

Now, the information obtained via the structure tensor can be applied
to the problem of HPR separation. Our goal is to classify each bin
in the spectrogram as being part of either the harmonic, the percus-
sive or the residual component of the input signal. As discussed in
section 1, bins assigned to the harmonic components should belong
to rather horizontal structures, while bins belonging to rather vertical
structures should be assigned to the percussive component. Bins that
do not belong to any kind of oriented structure should be assigned
to the residual component. Intuitively, for a bin (b, k) to be assigned
to the harmonic component, it should satisfy two constraints. First,
the absolute value of the angle α(b, k) should be smaller than some
threshold αh ∈ [0;π/2]. This means, that the bin should be part of
some spectral structure that does not have a slope bigger or smaller
than αh. This way also frequency modulated sounds can be consid-
ered to be part of the harmonic component, depending on the param-
eter αh. Secondly, the measure of anisotropy C(b, k) should sup-
port that the bin (b, k) is part of some directed, anisotropic structure,

and therefore exceeds a second threshold c. Note that for a given
bin (b, k), the angle α(b, k) together with the measure of anisotropy
C(b, k) define a point in R

2 given in polar coordinates. Figure 2
depicts the subset of all points that lead to an assignment to the har-
monic component (red regions). Similarly, we introduce another an-
gle threshold αp to define when a bin should be assigned to the per-
cussive component (blue regions in figure 2). Finally, all bins that
are assigned to neither the harmonic nor the percussive component
are assigned to the residual component (green regions in figure 2).

This assignment process can be expressed by defining a mask for
the harmonic component Mh, a mask for the percussive component
Mp and a mask for the residual component Mr . Note, that instead
of using the thresholds αh and αp we define thresholds on the max-
imum absolute frequency change rate rh, rp ∈ R

>0 with rp ≥ rh
to give the choice of parameters a better physical interpretation. The
masks are then given by:

Mh(b, k) =

{
1 , |R(b, k)| ≤ rh ∧ C(b, k) > c

0 , else
(14)

Mp(b, k) =

{
1 , |R(b, k)| > rp ∧ C(b, k) > c

0 , else
(15)

Mr(b, k) = 1−Mh(b, k)−Mp(b, k). (16)

Finally, the STFT of the harmonic component Xh, the percussive
component Xp and the residual component Xr are obtained by

Xh = Mh �X (17)

Xp = Mp �X (18)

Xr = Mr �X. (19)

The corresponding time signals can then be calculated via the inverse
STFT.

4. EVALUATION

To show the effectiveness of our proposed procedure in capturing
frequency modulated sounds in the harmonic component, we com-
pared our HPR method based on the structure tensor (HPR-ST) with
the non-iterative method based on median filtering presented in [10]
(HPR-M). Additionally, we also computed the metrics for the sepa-
ration results with ideal binary masks (IBM) that served as a refer-
ence for the maximal achievable separation quality.

4.1. System-under-test parameters

For both HPR-ST as well as HPR-M, the STFT parameters were cho-
sen to be fs=22050Hz, N=1024 and H=256, using a sine window
for w. The separation parameters for HPR-M were chosen as in the
experiments performed in [10]. For our method, the structure tensor
was calculated using the Scharr-Operator [17] as discrete differen-
tiation operator d. The smoothing was performed using a 9 × 9
isotropic Gaussian filter with the standard deviations σb=σk=1.4
which leads to σt≈16ms and σf≈30Hz. Finally, the thresholds for
the separation were set to e=20, c=0.2 and rh=rp=10000Hz/s.

Note that by our choice of rh and rp, even very steep structures
in the spectrogram are assigned to the harmonic component. Our
choice is motivated by observations about real world vibrato sounds
as for example shown in figure 1. Here, you can see that at some in-
stances the vibrato in the singing voice has a very high instantaneous
frequency change rate. Furthermore, note that by choosing rh=rp,
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Fig. 3. Comparison between the HPR-M and HPR-ST method for an
excerpt of the synthetic input signal (item 1). For enhanced visibility
the spectrograms were calculated with different STFT parameters
than used for the separation algorithms.

an assignment of a bin in the spectrogram to the residual component
is purely dependent on its anisotropy measure.

4.2. Objective results

To compare the behavior of HPR-ST and HPR-M when applied to
signals containing frequency modulated sounds, we generated two
test items. Test item 1 consists of the superposition of purely syn-
thetic sounds. The harmonic source was chosen to be a vibrato tone
with a fundamental frequency of 1000Hz, a vibrato frequency of
3Hz, vibrato extent of 50Hz and 4 overtones. For the percussive
source several impulses are used, while white noise represents the
neither harmonic nor percussive residual source. Item 2 was gener-
ated by superimposing real world signals of singing voice with vi-
brato (harmonic), castanets (percussive), and applause (neither har-
monic nor percussive). Interpreting the HPR separation of these
items as a source separation problem, we computed standard source
separation evaluation metrics (Source to distortion ratio SDR, source
to interference ratio SIR, and source to artifacts ratios SAR, as in-
troduced in [18]) for the separation results of both procedures. The
results are shown in table 1.

For item 1 HPR-ST yields a SDR of 21.25dB for the vibrato
tone, and is therefore closer to the optimal separation result of IBM
(29.43dB) than to the the separation result of HPR-M (11.51dB).
This indicates that HPR-ST improves on capturing this frequency
modulated sound in the harmonic component in comparison to HPR-
M. This is also shown in figure 3, where the spectrograms of the har-
monic components and the sum of the percussive and residual com-
ponent computed for both procedures are plotted. It can be seen that
for HPR-M the steep slopes of the vibrato tone leaked into the resid-
ual component (figure 3b+c), while HPR-ST (figure 3d+e) yields a
good separation. This also explains the very low SIR values of HPR-
M for the residual component compared to HPR-ST (-11.99dB vs.
14.12dB). Note that the high SIR value of HPR-M for the harmonic
component only reflects that there are little interfering sounds from
the other components, not that the sound of the vibrato is well cap-
tured as a whole. In general most of the observations for item 1 are
less pronounced, but also valid for the mixture of real world sounds
in item 2. For this item, the SIR value of HPR-M for the vocals even
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1 Vibrato 29.43 11.51 21.25 34.26 27.94 30.01 31.16 11.61 21.88

Impulses 8.56 -10.33 -1.47 20.31 -7.96 12.03 8.90 2.02 -1.00

Noise 8.49 -13.53 2.58 24.70 -11.99 14.12 8.61 3.97 3.06

It
em

2 Vocals 14.82 6.48 9.18 22.75 20.83 15.61 15.60 6.68 10.42

Castanets 8.48 3.79 2.37 21.59 16.09 17.96 8.73 4.16 2.56

Applause 7.39 -2.03 -0.37 20.31 1.11 6.34 7.66 3.33 1.58

Table 1. Objective evaluation measures. All values are given in dB.

exceeds the SIR value of HPR-ST (20.83dB vs. 15.61dB). Again,
the low SIR value for the applause supports that portions of the vi-
brato in the vocals leaked into the residual component for HPR-M
(1.11dB) while the residual component of HPR-ST contains less in-
terfering sounds (6.34dB). This indicates that our procedure was ca-
pable of capturing the frequency modulated structures of the vocals
much better than HPR-M.

Additionally to this objective evaluation, we also set up an ac-
companying website for this paper at [19] where one can find the
audio signals that were used in our experiments along with all sepa-
ration results.

5. CONCLUSION AND OUTLOOK

In this paper, we have proposed a novel approach for the problem
of HPR separation based on the structure tensor. We have shown
how frequency modulated sounds that hold tonal information can be
captured in the harmonic component of our procedure by exploiting
the information about the orientation of spectral structures provided
by the structure tensor. Finally, we evaluated the effectiveness of
our procedure HPR-ST by comparing it to the state-of-art median
filtering based method HPR-M presented in [10] by means of both
objective evaluation measures as well as audio examples. For signals
that contain frequency modulated tones, the novel HPR-ST method
was shown to provide much better separation results compared to
HPR-M. Note that even though research in image processing and
computer vision has already brought several additions and enhance-
ments for the structure tensor that could be applicable to the problem
discussed in this work, we have restricted ourselves to the basic ver-
sion to demonstrate the general functionality and usefulness of this
approach for HPR separation. Consequently, we see a high potential
in a further transfer of existing image processing research to improve
the method presented in this paper in future work. Finally, we think
that the structure tensor might not only be beneficial for the task of
HPR separation, but may also find applications in other audio pro-
cessing tasks such as singing voice detection [20].
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[12] Josef Bigun and Gösta H. Granlund, “Optimal orientation de-

tection of linear symmetry,” in Proceedings of the IEEE First
International Conference on Computer Vision, London, UK,

1987, pp. 433–438.

[13] Hans Knutsson, “Representing local structure using tensors,”

in 6th Scandinavian Conference on Image Analysis, Oulu, Fin-

land, 1989, pp. 244–251.

[14] Chris Harris and Mike Stephens, “A combined corner and edge

detector,” in Proceedings of the 4th Alvey Vision Conference,

Manchester, UK, 1988, pp. 147–151.

[15] Rolf Bardeli, “Similarity search in animal sound databases,”

IEEE Transactions on Multimedia, vol. 11, no. 1, pp. 68–76,

January 2009.

[16] Matthias Zeppelzauer, Angela S. Stöger, and Christian Breit-
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