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ABSTRACT solve BSS one approach is beamforming, which leverages the spa-

. tial filtering capability of a microphone array to isolate sources. Un-
Large-Area E_Iectronlcs (LAE) tech_nology has engbled the_ deveIOpf'ortunater, classical delay-sum beamforming is not well-suited to
ment of physically-expansive sensing systems with a flexible form-

. . - a practical room. This is because it uses pre-defined time delays
factor, including large-aperture microphone arrays. We propose Ahat are independent of frequency between the microphones, with

approach to blind source separation based on leveraging such an fle aim of constructively adding the signal from a target source and

ray. In our algorithm we carry out delay_-sum beamf_ormmg, but us.edestructively adding the signals from all interfering sources [3]. An
frequency-dependent time delays, making it well-suited for a practizy o,y approach to BSS is to use algorithms based on a fre-
cal reverberant room. This is followed by a binary mask stage for

further interference cancellation. A key feature is that it is fully quency domain implementation of independent component analysis

el . . o . - (ICA), which typically exploit statistical independencies of the sig-
blind”, since it requires no prior information about the location of pertls [4]. However, there are concerns about the robustness of these

tahnealsps(ie:kteorsegtrinT;;OErZ%nEZi;nsti?]atdr{ewlfair?ozﬁtcjkgrrgr?]agts: Cli?rse gorithms, especially in a reverberant room. This is due to the inher-
a d')(; Si ’nalsthat represent theym' ture of s'mgltaneo S SO rc?es nt permutation ambiguity of this approach, where after separation
udio sig P IXtu imu u u ’ n?dependently at each frequency, the components must further be as-

_have tes_ted this algonthm_ ina cor.n‘erence f"m(: 350 ms), us- signed to the correct source. This necessitates an additional decision
ing two linear arrays consisting of: (1) commercial electret capsules

. X : . tep [5].
and (2) LAE microphones, fabricated in-house. We have achlevea g . . . . i
high-quality separation results, obtaining a mean PESQ MOS im- Weinstein et al. [6] were able to isolate speech signals using con

. . ventional delay-sum beamforming, but had to utilize an array with
provement (relative to the unprocessec_j signal) for the electret arayver 1000 microphones to obtain acceptable results. Levi et al. con-
of 0.7 for two sources and 0.6 for four simultaneous sources, and fi i :

. YInued to use conventional delay-sum beamforming, but incorporated
the LAE array of 0.5 and 0.3, respectively. a spectral subtraction step based on SRP-PHAT after beamforming,
Index Terms— BSS, microphone array, beamforming, sourceenabling an array with just 16 microphones [7]. Unfortunately, this

separation, LAE, reverberant room, large-area electronics. approach is not blind, since it requires the location of the sources and
microphones.
1. INTRODUCTION In this work we propose and demonstrate a beamforming-based

algorithm for BSS, with the following main contributions:

Large-area electronics (LAE) is a technology that provides &. We also use delay-sum beamforming, but unlike prior work we
platform to build sensor systems that can be distributed over a do not use a single time delay across all frequencies for a given
physically-expansive space, while also supporting a wallpaper form microphone-source pair. Rather we use frequency dependent time
factor [1]. This makes possible systems that can be seamlesslydelays. This is needed since reverberations from the surfaces in
integrated into our everyday environment, enabling collaborative a practical room lead to multipath propagation, for which a linear
spaces that enhance interpersonal interactions. One example is arphase model is inadequate [8].
LAE microphone array we have demonstrated [2], that uses thip- e crucially differ from other beamforming attempts by being
film piezoelectric transducers for sensing sound and acquires audiopjing, requiring no prior information about the location of the
recordings using a custom CMOS readout IC. Such a system en- g, rces or microphones. The only information our algorithm
ables new possibilities for wide-scale deployment in noisy rooms, peeds about the environment is the number of sources. Thus, we
where multiple humans are speaking simultaneously. Using the 4yqig time consuming and technically challenging location mea-
spatially-distributed microphones, individual voice commands can grements [9]. Furthermore, we make no assumptions about the
be separated to enable collaborative human-computer interfaces.propagation of sound in a room. Rather, we extract time delays for
The aim of this work is to develop algorithms that accomplish voice  gach microphone-source pair on the fly from the sound mixture
separation in a practical room with practical speakers, who may of simultaneous sources. This enables our algorithm to adapt to
change their location during the course of use. _ the unique acoustic properties of each room (e.g., size, reverber-
When developing an algorithm for isolating different sources in - 4iion time, placement of objects) and a change in location of the
a practical room, known as the blind source separation (BSS) prob- 5orces. We use k-means clustering, an unsupervised classifica-
lem, one of the principal challenges is the unpredictability of the {jon technique, to identify a short (64 ms) frame at the beginning

acoustic path. Not only is the path affected by reverberations with qf the sound mixture in which only a single source is prominent,
surfaces and objects in the room, but human sources can move. Tomgaking such a frame well-suited for time delay extraction.

This work is funded by the Qualcomm Innovation Fellowship, and NSB. We apply our algorithm to experimental data from two adjacent
grants ECCS-1202168 and CCF-1218206. linear arrays, measured in a conference room: (1) an array of
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phones crophone. In this way we constructively sum the contributions from

the source we want to recover over all microphones, and attenuate
Delay Estimator . .

the other sources though destructive interference.
Fig. 1. Block diagram of our proposed algorithm. In classical delay-sum beamforming,. is treated as a con-
stant, frequency-invariant value, such as found in anechoic condi-

commercial electret capsules, and (2) an array or LAE MICrO%jong [3]. Instead, this implementation takes into account multipath

phones, W_hiCh are fabricated in-house [2]. The LAE microphone ropagation of sound in a reverberant room, which has the effect of
have non-idealities (e.g. non-flat frequency response, large varl-

. ! . ﬁmdomizing the phase spectrum of the room impulse response [8].
ation across elements) compared to electret microphones, whic
arise due to fabrication in a large-area, thin, and flexible form fac- .
tor. For both arrays we achieved high-quality separation result-3- Binary Mask
Our algorithm outperformed simple beamforming and was comq fyrther suppress interfering sound sources, a binary mask,
petitive with Independent Vector Analysis (IVA) BSS, a modern ps_(,,, 1), is applied to the output of the delay-sum beamformer:
frequency-domain ICA-based algorithm [10], while avoiding the
associated permutation problem. )?fef(w, 1) = jﬁief(w )M, (w,1). (6)
2. ALGORITHM
GO When constructing a binary mask, frequency bins are assigned a

Figure 1 shows the block diagram of the proposed algorithm. Th&alue of 1 if they meet the following criterion, otherwise they are

beamforming stage receives the convoluted mixture from all th&SSigned a value of O:

sources in the room and carries out delay-sum beamforming with —

frequency-dependent time delays. These are provided by the k- | X g (w, D] S>a (7)

means Time-Delay Estimator, wherein an optimal segment for esti- max(|)/(\/1 (@, )] &\,2 @, D), --- |3(\'S (@, D))

mation is first identified. To further cancel out interfering sources, ref DB e AL T 1R rep 1

the beamformer is followed by a binary mask stage. wherea is a constant threshold value that is experimentally tuned.
After applying the binary mask, the inverse FFT is taken of each

2.1. Problem Setup frame to recover the time domain signal, and successive frames are
concatenated using the standard Overlap-Add method.

The array consists af/ microphones, which separafesimultane-
ous sound sources, (t). The sound recorded by each microphone,
ym/(t), is determined by the room impulsk,,.(t), between each
source and microphone: Time delays between the reference and other microphones, can be
estimated by making each source play a test sound one-by-one in

2.4. Time Delay Estimates Based on k-Means Clustering

S . . h .
_ isolation. A frame from the test sound, such as speech or white noise
ym(t) = ; s (t) * hams (£). @ with the desired spectral content, can be used to find the time delays:
We designate one of the microphone channels as a referengte, Dins(w) =T s(w,1) = Trey s(w, 1) =
and express the signal recorded in the time-frequency domain at this 1 . . bm(w,1)
reference microphone, for frequeneyand frame index as: ﬁ(LXm(wvl) — LX) = Tomf (8)

5 where f is the frequency and X, (w, ) is the phase of a frame

Yiep (@) = DX, (@ DIH, ., (@] =) @) g0 the desired source recorded at microphone
s=1 We replace this calibration procedure by estimating the time de-
where lays directly from the signal when all sources are playing simultane-
H,, () =I|H,, ()]s (@) (3)  ously. We are able to achieve this by using a standard implementa-

. . . ) tion of k-means clustering based on euclidean distance [11]. We set
is the room impulse response in the frequency domain7ands (w)  the number of clusters;, to be equal to the number of sourcss,

is the time delay between the reference microphone and a sourgefeature vector is extracted for each frame, which consists of the

s. Our objective is to recover each sourcat the reference micro- phase differencep,, (w, {), between a given microphoney’, and
phone, as if it were recorded with the other sources muted: the reference at thy fréquencies of interest:

Xiep(w,l) = X, (@ DIH, ;@)= () Gmr (@, 1) = [Oun, Oz, -+ O] ©

with 6 taken to be in the rand®, 27).

Our intent is not just to classify each frame as belonging to a
The first step of our algorithm is delay-sum beamforming. Duringgiven source, since many frames have spectral content from multiple
this step, for a given source we time align all microphone signalsources. Therefore, estimating the time delay using the mean delay

2.2. Beamforming with Frequency Dependent Time Delays
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X=51m Number of Sources S=2(B,C)andS =4 (A, B, C,D)
Number of Micr ophones M=16

Afray (16 Microphones

with 15 cm Pitch, 225 cm Widih) Microphone Pitch 15 cm (total array width = 2.26).
& ;] 12 Harvard sentences from the
~ B4 o SourceSignals :
o Lo O g0y 50,1200 TSP database[13] (Duration = 3).
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e emy S Reverberation Times Teo = 350ms
Al dsms'n:;'“i“ =150 cm, Window Type Hamming
Roof iolght =260 em. T 350 m STFT Length 1024 samples (6#s)
. . . STFT Frame Shift 256 samples (16s)
Fig. 2. Experimental room setup (top view). A, B, C and D are the | Reference Microphone Located at center of linear array
speaker locations. Threshold for Binary Mask | « = 1.4 (see Equatiof).
(a) — i1 Table 1. Experimental and Signal Processing Parameters
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Fig. 3. Microphone sensitivity measured in an anechoic chamberFig. 4. SIR for time delays extracted from different frames versus
(a) Omnidirectional electret microphone, (b) LAE microphone. the silhouette of the frame for two sources (a)Source B (b)Source C.

over all frames in a cluster would lead to a poor estimate. RathefMOS) range from -0.5 (bad) to 4.5 (excellent) [16].
we want to identify the best possible frame from which to derive

the time delays. To identify these frames we calculate the silhouettg.2. Time Delay Estimator Performance

[12], s(1), for every feature vector, and choose the frame with the

highest value: We compared the performance of our algorithm using time delays
' b(1) — a(l) extracted under two conditions: (1) White Gaussian noise, which
. = —" < 1 -at-a-ti i
s(1) max(6(0), a(l)) (10)  was played by each speaker one-at-a-time, before the simultaneous

recording, and (2) from a single frame of simultaneous speech that
wherea(l) is the mean distance between the feature vector from thevas selected by our k-means-based silhouette criterion. It should be
frame with index and all other feature vectors assigned to the sam@oted that to improve the estimate when extracting the time delays
cluster. Then, the mean distances to the feature vectors corresporitbm white noise, the phase difference in Equation 8 consisted of the
ing to all other clusters are also calculated, and the minimum amongircular mean [17] calculated from 50 successive frames.

these is designated &§/). The value ofs(l) is bounded between To identify the best frames for time delay extraction, we imple-
[-1,1], and a larger value indicates it is more likely a feature vectormented k-means with 312 features vectors. Each feature vector was
has been assigned to an appropriate cluster. extracted from a different frame (frame length = 64 ms, frame shift
=16 ms) taken from the first 5 s of the recording with the simultane-
ous sources. We used a total of 160 features, corresponding to the
3. EXPERIMENTAL RESULTS phase difference between the closest adjacent microphone and the
3.1. Setup Conditions r3%f86e|r_1lce microphone for each frequency bin between 500 Hz and
z.

Experiments were carried out in a conference room, as shown in After k-means, the silhouette was calculated for all 312 feature
Figure 2, playing both two (B and C) and four (A, B, C and D) si- vectors in order to select a feature vector per source for extracting
multaneous sound sources from a loudspeaker (Altec ACS90). Tabtame delays. Figure 4 validates the use of the silhouette as a metric
1 has a summary of experimental conditions. The two linear arrayor selecting a frame to use for time-delay extraction (calculated after
were mounted horizontally, with a PVDF microphone approximatelythe beamforming stage, using time delays extracted from the feature
3 cm above a corresponding electret microphone; thus, allowing ugector, for two simultaneous sources). Figure 5 shows a compari-
to directly compare the performance of the two arrays. Each arson, for two representative microphones in the array, of the phase
ray used different elements: (1) Commercial omnidirectional elecdelays estimated using white noise played in isolation versus those
tret capsules (Primo Microphone EM-172); (2) LAE microphones,estimated from frames selected based on the silhouette. Good agree-
which are based on a flexible piezoelectric polymer, PVDF, and arenent is observed. Below we also compare the performance of our
fabricated in-house. Figure 3 shows the frequency response of botigorithm when using time delays from white noise and k-means. In
types of microphones, including the non-idealities of LAE micro- most experiments there is only a small performance degradation for
phones arising due to the fabrication methods which lead to thek-means, highlighting its effectiveness for enabling BSS.
large-area, thin, and flexible form factor e.g. reduced sensitivity, a
non-flat response and large variations across elements. _3.3. Overall Algorithm Performance

To assess the performance of our algorithm we used two metrics:
(1) Signal-to-Interferer Ratio (SIR) calculated with tB&S Eval A lower limit on performance is given by calculating the SIR and
Toolbox [14] [15]; (2) PESQ using the clean recording from the TSPPESQ at the reference microphone before any signal processing. An
database [13] as the reference signal. PESQ mean opinion sconggper limit is given by the PESQ at the reference microphone when
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Fig. 9. Separating four sources with an array of LAE microphones.

the PESQ of the upper limit is lower, due to the reduced performance
of the LAE microphones. In this case the PESQ from white noise is
close to the upper limit, while the PESQ from k-means is lower. This
suggests that the reduced sensitivity of the LAE microphones causes
the time delay estimates, extracted from the mix with simultaneous
sources, to degrade. Nevertheless, a mean PESQ improvement of
0.5 is still obtained.

In Figure 8, we test the electret microphone array with four
sources. The PESQ scores of our algorithm are no longer as close to
the upper limit, due to the initial lower PESQ and SIR of most of the

. . . . . unprocessed signals. Nevertheless, speech is significantly enhanced,
only a single source is playing, using as a reference signal the Cle%th amean PESQ MOS improvement of 0.6. In Figure 9, we repeat

anechoic recording that was inputted into the loudspeaker. In Figurggg g5 me experiment with the LAE microphone array and find the
6to 9, we show that for all configurations our algorithm Successmllyalgorithm shows a larger degradation, with a mean PESQ improve-
enhances speech, significantly in_cr_easing both SI_R and PESQ. Italﬁ?ent of 0.3. These results demonstréte how our algorithm can still
shows how our algorithm, combining beamforming followed by &, ,\ije improvements in speech quality even in settings where the

binary mask, outperforms using only the beamforming stage. unprocessed input signal has been severely degraded, due to non-
To compare the performance of our algorithm with a modern;yaq) microphones and low initial SIR values.

conventional BSS algorithm, we chose IVA BSS [10]. For a fair
comparison the parameters of IVA were optimized, including using
an STFT length of 1024 samples. When using the minimum number
of microphones for IVA BSS (2 microphones for 2 sources, 4 micro- . . . .
phones for 4 sources) our algorithm (using the entire 16 microphon}éve develop a beamfor_mlng algorithm for blind source sep_aratlon us-
array) outperforms by a wide margin. On the other hand when usin g a large-aperture microphone array. The algorithm estimates time
IVA BSS with the entire array and selecting the best channels fro elays between each source and microphone from the sound mixture

the 16 separated outputs, IVA BSS and our algorithm perform at gf simultaneous sources, by using k-means cluster analysis to iden-
similar level. For two SOL’JI’CES both algorithms have PESQ value fy suitable frames for the estimate. This enables our algorithm to be

approaching the original isolated sound, but for four sources bothP/nd"> Since we do not require the location of the microphones and
sometimes fail o significantly enhance certain sources. sources, and can adapt to the acoustic properties of each room and

In Figure 6, when using two sources and the array with electreg change in location of the sources. We tested the algorithm using

capsules, the PESQ is nearly the same as the upper limit (e.g. tg’ci)th commercial electret and LAE microphone arrays, with two and

Fig. 7. Separating two sources with an array of LAE microphones.

4. CONCLUSION

- ; . .20 four simultaneous sources, and in all cases we obtained significant
sound played in isolation at the reference microphone), highlightin provements in speech quality, as measured with PESQ and SIR.

the effectiveness of our proposed algorithm. A mean PESQ IMProVeryese improvements, combined with the simplicity of our algorithm,

ment of 0.7 is obtained when comparing the blind algorithm (with akes it a strong potential candidate for a real-time implementation
k-means delays) to the unprocessed signal. In Figure 7, we repemt 9p P
or an embedded system.

the same experiment with the LAE microphone array and find tha
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