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ABSTRACT

We propose a method for estimating the prior signal-to-noise ratio
(SNR), which is used for calculating the Wiener filter for distant
sound source extraction, from output signals of beamforming using
statistical mapping based on the deep neural network (DNN). Since
informative features to estimate the prior SNR are included in mul-
tiple beamforming outputs, the SNR can be accurately estimated by
this mapping using the DNN. The proposed method was applied to a
large microphone array, the design of which was optimized to form
effective directivity patterns to extract distant sound sources. Exper-
imental results proved that the target source was clearly extracted
with the proposed method.

Index Terms— source enhancement, microphone array, beam-
forming, signal-to-noise ratio (SNR), deep neural network (DNN)

1. INTRODUCTION

Signal processing using microphone arrays [1, 2] has been used to
extract a target source in noisy environments. Most studies on mi-
crophone arrays have been focused on problems in which the target
sound source is located within a range of a few meters from the mi-
crophone array. However, there are quite a few practical situations in
which the target source needs to be zoomed in from a remote loca-
tion, such as the recording of an athlete’s voice on a playing field in
a stadium. The ultimate goal with this study was to extract the target
source surrounded by various noise sources from a remote location.

Most conventional studies on microphone arrays have been fo-
cused on the design of beamforming; however, several researchers
have focused on array structures, e.g., minimum redundancy [1] and
rigid spherical array [10]–[13], for improving the performance of the
sound source enhancement. We previously investigated the prop-
erties of the optimum spatial correlation matrix [1, 2] to segregate
sound sources. The findings from this study were implemented in
a microphone array specifically designed to follow [14]–[16]. With
this specific microphone array, the effective cues for segregating the
target source from other noise sources are included in the observed
signals; thus, sharp directivity to enhance the target source can be
formed over a broad frequency range, even if an ordinary beamform-
ing method is adopted. However, the noise reduction capability of
the previous method is limited; thus, it is still difficult to extract the
target source if it is severely contaminated by noise sources.

Applying the Wiener filter as a post-filter of beamforming is also
effective for boosting noise reduction performance [3]–[9]. To cal-
culate the Wiener filter, it is necessary to estimate the SNR at the
beamforming output. The power spectral density (PSD) estimation
method using multiple beamforming outputs (e.g. PSD estimation in
beamspace [8, 9]) was developed to estimate the PSD of both the tar-
get source and noise for calculating the signal-to-noise ratio (SNR)

of microphone array observation. However, the required prior SNR
for calculating the Wiener filter should be that at the beamforming
output but not at the microphone array observation. Thus, an alter-
native method for estimating the prior SNR is required to achieve
better sound source enhancement. To this end, we propose a method
that uses the DNN [17]–[23], which maps the output signals of the
multiple beamforming outputs to the prior SNR. Thanks to the recent
progress in research, the DNN can provide an accurate mapping be-
tween two pieces of information if informative features are available
as its input. For this study, we attempted to use the output of multi-
ple beamforming outputs as the input of the DNN and obtain a more
accurate prior SNR for calculating the Wiener filter. The Wiener fil-
ter was then applied to the output of a beamformer applied to the
microphone array with the optimal design of its spatial correlation
matrix.

2. MICROPHONE ARRAY FOR INCREASING
MUTUAL INFORMATION OF MIMO

2.1. Observation model

Let us assume that K source signals are observed using M micro-
phones. This situation is regarded as a multiple-input and multiple-
output (MIMO) system. When the transfer function between the k-
th source and m-th microphone is denoted as Am,k,ω , the observed
signals xω,τ are expressed by

xω,τ = Aωsω,τ + nω,τ , (1)

where each vector or matrix in (1) is defined as

xω,τ = [X1,ω,τ , . . . , XM,ω,τ ]
T, (2)

Aω = [a1,ω, . . . ,aK,ω], (3)

ak,ω = [A1,k,ω, . . . , AM,k,ω]
T, (4)

sω,τ = [S1,ω,τ , . . . , SK,ω,τ ]
T, (5)

nω,τ = [N1,ω,τ , . . . , NM,ω,τ ]
T. (6)

with the transposition being denoted as T. The k-th source signal
is represented as Sk,ω,τ and the background noise received by the
m-th microphone is denoted as Nm,ω,τ , where ω and τ denote the
index of frequency and frame, respectively.

The sound sources and noises are assumed to be uncorrelated;

RS,ω =
〈
sω,τs

H
ω,τ

〉
= σ2

S,ωIK , (7)

RN,ω =
〈
nω,τn

H
ω,τ

〉
= σ2

N,ωIM , (8)

where 〈·〉 and H denote the expectation and Hermitian conjugate,
respectively. Then, the spatial correlation matrix [1, 2] is given by
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RX,ω=
〈
xω,τx

H
ω,τ

〉
=AωRS,ωA

H
ω+RN,ω=σ2

S,ωRA,ω+σ2
N,ωIM ,

(9)
where RA,ω is composed of the received power σ2

A,ω, assumed to be
normalized a priori, and the cross-correlation between microphones
Γi,j,ω, which is expressed as

RA,ω = AωA
H
ω =

⎡
⎢⎢⎢⎣

σ2
A,ω Γ1,2,ω · · · Γ1,M,ω

Γ2,1,ω σ2
A,ω · · · Γ2,M,ω

...
...

. . .
...

ΓM,1,ω ΓM,2,ω · · · σ2
A,ω

⎤
⎥⎥⎥⎦ . (10)

2.2. Array structure design to increase mutual information of
MIMO using parabolic reflectors

In our previous study [16], we (i) derived a model of the optimum
structure of the spatial correlation matrix to segregate source sig-
nals and (ii) tested the performance of sound source enhancement
by building a microphone array that follows the model. To measure
how much information about sω,τ is included in xω,τ , the mutual
information between sω,τ and xω,τ , Is;x was defined as

Is;x = Hs −Hs|x, (11)

where Hs and Hs|x denote the entropy of the transmitted informa-
tion and propagation loss, respectively. If the structure of Aω is ir-
regular or the received background noise level is substantially high,
Hs|x will increase. To investigate the structure of the spatial cor-
relation matrix which maximizes Is;x, the channel capacity of the
MIMO system, denoted as Cω , is calculated as [24, 25]

Cω = max{Is;x} = log2 det

(
σ2

S,ω

σ2
N,ω

RA,ω + IM

)
. (12)

By applying the eigenvalue decomposition to RA,ω , Cω is expressed
by [24, 25]

Cω = log2

M∏
m=1

(
σ2

S,ω

σ2
N,ω

Λm,ω + 1

)
, (13)

where Λm,ω denotes the m-th eigenvalue of RA,ω . In our previous
study [16], we proved that Cω is maximized if signals are observed
to homogenize the eigenvalues;

Λ1,ω =, . . . ,= ΛM,ω. (14)

The eigenvalues are homogenized, as in (14), and the array observa-
tions are then de-correlated as

lim
Γi,j,ω→0

RA,ω → σ2
A,ωIM . (15)

If Is;x is increased, effective clues for segregating sound sources will
be included in the observation signals.

As a microphone array implementation for increasing Is;x, we
previously developed a microphone array whose microphones are
semi-optimally placed in front of parabolic reflectors [16], as shown
in Fig. 1. When a sound source is located in front of a parabolic re-
flector, the reflected waves pass through an area around a focal point
of the reflector. Due to the reflector, even a small perturbation of the
microphone position will drastically change the amplitude and phase
of the received signal. Thus, we assumed that Is;x would increase
by optimizing the microphone arrangement. We constructed a mi-
crophone array composed of 12 parabolic reflectors and M = 96
omnidirectional microphones, the details of which are explained in
our previous study [16]. To increase Is;x, eight microphones were
placed in front of each reflector.

8 microphones are semi-
optimally placed in front 
of each parabolic reflector.

Fig. 1. Array structure to increase mutual information of MIMO
using parabolic reflectors (4.0 m (W) × 1.5 m (H) × 1.0 m (D))

2.3. Source enhancement using beamforming

When a signal is observed from the array discussed in Sec. 2.2, it
is difficult to analytically derive the transfer functions between the
sound sources and microphones. Thus, we designed beamforming
filters using pre-measured room impulse responses (RIRs). When
the minimum variance distortionless response (MVDR) method [26]
is used, filter coefficients for emphasizing the sound source arriving
from the i-th position are calculated by

wi,ω =
R−1

A,ωai,ω

aH
i,ωR

−1
A,ωai,ω

. (16)

After multiplying wi,ω by the observed signals, the i-th enhanced
output signal is calculated as

Yi,ω,τ = wH
i,ωxω,τ . (17)

Even when a beamforming is applied, as in (17), sharp directivity can
be formed over a broad range of frequencies [16]. Although the SNR
improves, especially in a high frequency range, some residual noise
still remains in the beamforming output, especially when the noise
level is significantly higher than that of the target speech. To clearly
extract a user-pointed sound source, it is necessary to improve the
source enhancement processing.

3. DNN-BASED PRIOR SNR ESTIMATION USING
MULTIPLE BEAMFORMING OUTPUTS

3.1. Wiener filter design using prior SNR

To extract the target source arriving from the i-th source position, we
apply the Wiener filter to the beamforming output using

Zi,ω,τ = Gi,ω,τYi,ω,τ . (18)

The Wiener filter Gi,ω,τ is calculated by

Gi,ω,τ =
10(ξi,ω,τ /10)

1 + 10(ξi,ω,τ /10)
, (19)

where ξi,ω,τ [dB] denotes the SNR at the beamforming output.
The PSD-estimation-in-beamspace method is effective for esti-

mating the SNR at the observation point, which differs from ξi,ω,τ

[8, 9]. By using L (≥2) beamforming output PSDs, as in (20), and
the response sensitivities, as in (21), the PSDs of the target sound
source and those of other noise can be estimated individually,

φY,i,l,ω =
〈|Yρ(i,l),ω,τ |2

〉
, (20)

Dl,k,ω =
∣∣∣wH

l,ωak,ω

∣∣∣2 , (21)

where ρ(i, l) denotes the focus position index of the l-th beamform-
ing when the sound source arriving from the i-th position is the tar-
get. Since the SNR at the observation point could be estimated from
multiple beamforming outputs |Yρ(i,l),ω,τ |2, informative features to
estimate ξi,ω,τ could also be included in the PSDs.
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3.2. DNN mapping from beamforming outputs to prior SNR

Our proposed DNN-based mapping method converts multiple beam-
forming outputs |Yρ(i,l),ω,τ |2 to ξi,ω,τ . The DNN is a state-of-the-
art statistical approach that has been attracting interest in many en-
gineering fields recently. If informative features for estimating the
desired SNR are included in multiple beamforming outputs, with the
DNN algorithm, the network parameters between the |Yρ(i,l),ω,τ |2
and ξi,ω,τ , which is supervised a priori, are optimized automatically.

Let the following feature vector composed of log-scaled multi-
ple beamforming outputs be set to the input layer of the DNN with
N -layers,

q
(1)
Ωj

=10 log10{[|Yρ(i,1),Ω1 ,τ |2, . . . , |Yρ(i,1),ΩO ,τ |2, . . .
. . . , |Yρ(i,L),Ω1,τ |2, . . . , |Yρ(i,L),ΩO,τ |2]}T, (22)

where Ωj is the index of the frequency band divided into O equiv-
alent rectangular bandwidth (ERB) scale [27]. The element num-
ber of q

(1)
Ωj

is L×O. This shrinkage is introduced to reduce the
number of procedures for network parameter optimization. Given
that the network parameter pΩj includes both P

(2)
Ωj

, . . . ,P
(N)
Ωj

and

b
(2)
Ωj

, . . . ,b
(N)
Ωj

, u(n)
Ωj

and q
(n)
Ωj

are calculated by a recursive update
for N − 1 times expressed by

u
(n)
Ωj

= P
(n)
Ωj

q
(n−1)
Ωj

+ b
(n)
Ωj

, (23)

q
(n)
Ωj

= f
(n)
Ωj

(
u
(n)
Ωj

)
. (24)

Note that the network parameter was prepared for each frequency
band independently. Assuming the number of nodes in the n-layer is
denoted as Jn, the vectors and matrices in (23) and (24) are defined
as

u
(n)
Ωj

=
[
u
(n)
1,Ωj

, . . . , u
(n)
Jn,Ωj

]T
, (25)

q
(n)
Ωj

=
[
q
(n)
1,Ωj

, . . . , q
(n)
Jn,Ωj

]T
, (26)

P
(n)
Ωj

=

⎡
⎢⎢⎣

P
(n)
1,1,Ωj

· · · P
(n)
1,Jn−1,Ωj

...
. . .

...
P

(n)
Jn,1,Ωj

· · · P
(n)
Jn,Jn−1,Ωj

⎤
⎥⎥⎦ , (27)

b
(n)
Ωj

=
[
b
(n)
1,Ωj

, . . . , b
(n)
Jn,Ωj

]T
, (28)

f (n)
(
u
(n)
Ωj

)
=

[
f (n)

(
u
(n)
1,Ωj

)
, . . . , f (n)

(
u
(n)
Jn,Ωj

)]T
. (29)

For the activation function f(n)(·), either a sigmoid function
(n = 2, · · · , N − 1) or an identity function (n = N) is used;

f(u) =

{
1/(1 + exp(−u)) (n = 2, . . . , N − 1)

u (n = N)
. (30)

Given that the number of nodes in the output layer is JN = 1, the
estimated SNR is obtained from the network parameter pΩj ;

ξ̂i,Ωj ,τ = q
(N)
1,Ωj

. (31)

After extending ξ̂i,Ωj ,τ into the linear frequency scale, the Wiener
filter to extract the target source is designed, as in (19).

Thanks to the progress in machine learning, the deep belief net-
work (DBN) [17] is effective for setting appropriate initial values
of pΩj . In this study, we used the contrastive divergence [18, 19]
to specify an appropriate amount of update for the network param-
eters of each layer. After initializing pΩj , the network parameters

Zi,
Gi,Beamforming #1

(Focus on target)

Beamforming #2
Quantized 

f

DNN mapping 1
Winer filter 
calculation

Yi,

Beamforming #2
(For noise reference)

Beamforming #L
(For noise reference)

to feature 
vector in 
Eq. (22) DNN mapping O

calculation
in Eq. (19)i,

i,

Fig. 2. Procedure of proposed method

were optimized based on the back propagation [28] to minimize the
estimation error, which is defined by

E(pΩj ) =
1

2

D∑
d=1

‖ ξi,Ωj ,τ − ξ̂i,Ωj ,τ ‖2, (32)

where D denotes the total number of training datasets composed of
both multiple beamforming outputs q(1)

Ωj
and the true SNR ξi,Ωj ,τ as

the supervisor. The procedures in (23) and (24) applied toD samples
can be represented as a matrix form given by

U
(n)
Ωj

= P
(n)
Ωj

Q
(n−1)
Ωj

+ b
(n)
Ωj

1T
D, (33)

Q
(n)
Ωj

= f
(n)
Ωj

(U
(n)
Ωj

), (34)

where

U
(n)
Ωj

= [u
(n)
Ωj ,1

, . . . ,u
(n)
Ωj ,D

], (35)

Q
(n)
Ωj

= [q
(n)
Ωj ,1

, . . . ,q
(n)
Ωj ,D

]. (36)

The gradient of the network parameters is recursively calculated
from the output layer (n = N) towards the input layer (n = 1).
Given that ΞΩj = [ξΩj ,1, . . . , ξΩj ,D], the gradient at the n-th layer

Δ
(n)
Ωj

is derived by

Δ
(n)
Ωj

={
f (n)′(U

(n)
Ωj

)� (P
(n+1)T
Ωj

Δ
(n+1)
Ωj

) (n = 2, · · · , N − 1)

ΞΩj −Q
(n)
Ωj

(n = N)
(37)

where � denotes an element-wise product of matrices. The gradient
of the error functions is derived by

∂P
(n)
Ωj

=
1

D
Δ

(n)
Ωj

Q
(n−1)T
Ωj

, (38)

∂b
(n)
Ωj

=
1

D
Δ

(n)
Ωj

1T
D. (39)

Finally, the network parameters are updated as

P
(n)
Ωj

← P
(n)
Ωj

+ΔP
(n)
Ωj

, (40)

b
(n)
Ωj

← b
(n)
Ωj

+Δb
(n)
Ωj

, (41)

where the perturbations for each update are calculated by

ΔP
(n)
Ωj

= μΔP
(n)∗
Ωj

− ε
(
∂P

(n)
Ωj

+ λP
(n)
Ωj

)
, (42)

Δb
(n)
Ωj

= μΔb
(n)∗
Ωj

− ε∂b
(n)
Ωj

, (43)

Here, ΔP
(n)∗
Ωj

and Δb
(n)∗
Ωj

are the perturbations of the previous up-
date, ε is the learning rate, and μ and λ are the momentum coefficient
and weight decay, respectively.
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Fig. 3. Experimental setup

Fig. 4. Output waveform when K = 5 sources are used. (a) Original
target source signal, (b) observed signal, (c) MVDR beeamforming
that focuses on target, and (d) output signal with proposed method

4. EXPERIMENTS

4.1. Experimental conditions

We investigated the performance of the proposed method by evalu-
ating both prior SNR estimation error and the SNR of the output sig-
nal. As a comparison method, we applied MVDR beamforming, as
in (17). To design beamforming filters, RIRs from 72 loudspeakers
to M = 96 microphones were measured in prior, as shown in Fig. 3.
The distance between the center of the array and a sound source was
16.5 m, and the distance between loudspeakers was 0.25 m. To de-
sign the MVDR filter, impulse responses of 8 ms arriving from the
direct sound were used. For evaluation, the positions of the target
source were limited to 6, as shown in Fig. 3. We designed L = 3
beamforming filters for each target position. The focus point of each
beamforming was the target position (l = 1), 1.25 m left/right from
the target position (l = 2, 3), respectively. To investigate the rela-
tionships between the number of sound sources and the output SNR,
K was varied from 2 to 5. We randomly placed K − 1 interference
noise sources at the positions at which RIRs were measured. In total,
50 trials for sound source arrangement were executed for each com-
bination of K and target position. A total of 24 types of male/female
speech signals were used as the source signals.

By shrinking L=3 beamforming outputs into an ERB-scale fea-
ture vector, as in (22), O = 57 types of network parameters were
optimized, which were not varied with the target source position.
The total number of the training/test dataset was D=598800. The
speech signals and positions of the interference sources were differ-
ent among the training and test datasets (i.e. open test). The number
of layers for the DNN was set to N=4. The other parameters used
in the experiment are summarized in Table 1.

4.2. Experimental results

To evaluate the proposed prior estimation method, we calculated the
averaged absolute error |ξi,Ωj ,τ − ξ̂i,Ωj ,τ | for each frequency band,

Table 1. Parameters used in experiments

# of microphones, M 96
Sampling rate 16 kHz
FFT length 16 ms
# of frequency bands, O 57 (ERB scale)
# of beamformings, L 3
# of measured impulse responses 72 (Rows: 3, Columns: 24)
# of layers, N 4
# of nodes, Jn J1:171, J2:220, J3:220, J4:1
Learning coefficient, ε 0.005, 0.0025, 0.0001
Iteration number 30 (for each ε)
Momentum coefficient, μ 0.5 (first 3), 0.9 (after 4)
Decay weight, λ 0.0002
# of target source positions 6
# of noise sources patterns 4 (K=2,3,4,5)
# of source position arrangements 50 (for each target position)
# of frames for each speech 499 (8.0 sec)
# of training datasets, D 598800 (=6*4*50*499)
# of evaluation datasets (open test) 598800 (=6*4*50*499)

Table 2. Prior SNR estimation error with proposed method

Frequency [kHz] 0.5 1.0 2.0 4.0 7.5
Prior SNR estimation error [dB] 8.8 6.4 5.4 5.0 2.1

Table 3. Evaluation of output SNR

Number of sound sources K=2 K=3 K=4 K=5
SNR (observed point) [dB] 0.6 -2.6 -4.5 -5.7
SNR (beamforming) [dB] 6.8 4.4 3.3 2.7
SNR (proposed method) [dB] 34.7 30.8 28.7 27.3

and the results are listed in Table 2. The estimation error decreased,
especially at high frequencies. Since the sharp directivity could be
formed as frequency increased with our array [16], informative cues
to estimate the prior SNR could be included in the multiple beam-
forming outputs.

After estimating prior SNR for each frequency band, we de-
signed the Wiener filter and applied it, as in (19). Fig. 4 shows wave-
form examples when K = 5 sound sources were used. The target
source was positioned third from the left, as shown in Fig. 3. With
the proposed method, the output signal was almost the same wave-
form as the original signal. Table 3 shows the relationships between
K and the averaged SNR of the output signal of MVDR beamform-
ing and the proposed method. From these results, SNR improved by
about 25 dB compared with MVDR beamforming, independently of
K. Thus, it was confirmed that the proposed method is effective for
extracting the target source even when it was positioned at a remote
location.

5. CONCLUSION

We proposed a DNN-based mapping method from multiple beam-
forming outputs to the prior SNR at the beamforming output. By
learning the relationships between the multiple beamforming outputs
and prior SNR beforehand, the DNN parameters were optimized. By
using estimated prior SNR, the Wiener filter was generated and ap-
plied to the beamfoming output. Through experiments, the estima-
tion error on the prior SNR was sufficiently low and it was enable to
pick up the target source positioned at a remote location.

For future work, we will investigate the environmental robust-
ness of the pre-learned DNN parameters and apply another structure
for microphone array observations.
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