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ABSTRACT
In this paper we present a novel algorithm to localize and separate
simultaneous speakers using hearing aids when the head is subject to
rotational movement. Most of the algorithms used in hearing aids are
able to extract target signals that are in the look direction of the user
and suffer from a reduced performance in localizing sounds received
from other directions. Moreover, head-shadowing as well as varia-
tions like head movements may lead to significant distortions. The
proposed binaural GSC beamformer includes an MMSE-based lo-
calization algorithm using an ITD/ILD model and is controlled by an
inertial measurement unit. The localization algorithm can effectively
localize multiple speakers in the presence of reverberation. The esti-
mated source locations are used to adapt the GSC beamformer which
extracts the desired speaker. Experimental results demonstrate the
performance of the new system and especially the benefits of ILD
information.

Index Terms— Binaural source localization, beamforming,
source separation

1. INTRODUCTION

Speech enhancement for hearing aids has received significant atten-
tion in the past decade [1]. While it has been shown that single-
channel methods improve the signal quality and reduce listener fa-
tigue, multi-channel methods also enable the attenuation of fast fluc-
tuating interferences such as competing speakers and thus bear the
promise of improved intelligibility [2]. Moreover, with the advent of
the wireless link in hearing devices binaural adaptive beamformers
are of increasing interest [3]. However, a common assumption of
most algorithms is that the target source is in front of the listener.

First and second-order adaptive differential microphone arrays
[4], [5] are broadly used in current hearing aids, and they per-
form well for target sources located in the look direction. Other
types of beamformer e.g. minimum variance distortionless response
(MVDR) [6], multi-channel Wiener filter (MWF) [7], and the gener-
alized sidelobe canceller [8] have also been employed successfully
in hearing aids. A binaural MWF, for instance is proposed in [9]
that also deals with the problem of binaural cue preservation. Fur-
thermore, a superdirective beamformer is introduced in [10] that
integrates binaural cues of a spherical head model into the MVDR
beamformer and generates binaural signals.

In this paper, we aim at localization and separation of simultane-
ous speakers using behind-the-ears (BTE) hearing aids while we also
account for rotational movements (yaw) of the head. Head move-
ments are tracked by means of an inertial measurement unit (IMU)
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which provides the relative position of the head at each time step
with respect to its initial position. We adapt our IMU-based beam-
forming approach [11] from the previously used linear array of mi-
crophones to binaural hearing aid microphones. We show that the
reduction in the number of microphones from five microphones (in
case of the linear array) to two microphones (new binaural configu-
ration) can be compensated to a large extent if the head-shadowing
effect is properly taken into account.

The binaural configuration causes a delay and an attenuation be-
tween the microphones which will no longer follow the free-field
scenario [12]. In order to account for the head-shadowing effect
we integrate binaural cues, i.e. the interaural time or phase dif-
ference (ITD / IPD) and the interaural level difference (ILD) into
our system. Both cues are characterized in the form of a spheri-
cal head model [13] and merged in a novel minimum mean-square
error (MMSE)-based localization approach that results in a simple
addition of contributions from both cues. Our localization approach
bears similarity with [14] where also ILD and ITD cues are com-
bined in the Fourier domain, however, not in a simple addition but
in a two-stage approach. Other systems, e.g. [15] and [16], inte-
grate the binaural information into a statistical model that requires
prior training. In [17] binaural room impulse responses estimated by
means of blind channel identification are used instead of the micro-
phones signals to compute binaural cues and to estimate the DOA of
a single source. In work [17] the head model is employed to evalu-
ate ITD cues while measured HRTFs are used for the evaluation of
ILD cues. The proposed MMSE-based localization approach using
the head model does not need a training step and provides a flexible
integration of ITD and ILD cues in low and high frequency ranges.
It effectively estimates the direction of arrival (DOA) of two or more
speakers in each time frame. Thus, our approach enables the local-
ization and the separation of target signals across a wide range of
frequencies.

The remainder of this paper is organized as follows: In Section
2 we describe the binaural signal model as well as the HRTF model
used in this paper. Section 3 will discuss the proposed system inte-
grating the MMSE-based localization algorithm with the IMU-based
GSC beamformer. Experimental results and conclusion will be pre-
sented in Sections 4 and 5, respectively.

2. BINAURAL SIGNAL AND HRTF MODEL

In the scenario depicted in Fig. 1 we consider binaural signals from
two sources received by the front microphones of two BTE hearing
aids. Using the convolution operator ∗ the received signal at each
microphone m is written as

xm(n) =

2∑
i=1

si(n) ∗ him(n) + νm(n) (1)
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where si(n) represents point source signal, him(n) indicates a bin-
aural room impulse response (BRIR) from the source i to the micro-
phone m, m ∈ {L,R}, νm(n) is the noise at microphone m, and n
is the sampling index. To analyze signals in the STFT domain, we
take aK−point discrete Fourier transform (DFT) on overlapped and
windowed signal frames. Using matrix notation we thus obtain(

XL(k, b)
XR(k, b)

)
=

(
H1L(k, b) H2L(k, b)
H1R(k, b) H2R(k, b)

)(
S1(k, b)
S2(k, b)

)
(2)

+

(
VL(k, b)
VR(k, b)

)
.

Here, Him(k, b) are the transfer functions of the left and right ears
and (k, b) indicate frequency and frame index. The received signals
are analyzed through the proposed binaural IMU-based GSC beam-
former which is depicted in the lower part of Fig. 1 and will be
discussed in Section 3.

2.1. Head-related transfer function (HRTF) model
In contrast to an HRTF database which depends on individual fea-
tures e.g. the size of the head, pinnae, etc. we use a model that is
more general and makes us free of measuring the HRTF in specific
situations [10]. An HRTF model is proposed by Brown and Duda
[13] that approximates the ITD and ILD using two filter blocks. A
first-order recursive head-shadow filter cascaded by a delay element.
Taking the coordinate system in Fig. 1 into account, the HRTF of
the right ear is expressed as

HR(ω, θ) =
1 + j ω

2ω0
γR(θ)

1 + j ω
2ω0

e−jωτR(θ). (3)

In this equation we have ω0 = c/a, where c is the speed of sound, a
is the radius of the head, and θ = θS1 is the angle between the first
source and the right ear. γR(θ) and τR(θ) are two angle-dependent
parameters that are defined as (θmin = 150◦, and βmin = 0.1)

γR(θ) =

(
1 +

βmin
2

)
+

(
1− βmin

2

)
cos

(
θ

θmin
180◦

)
(4)

τR(θ) =

{
−a
c

cos(θ) if 0◦ ≤ |θ| ≤ 90◦

a
c

(|θ| − 90) π
180

if 90◦ ≤ |θ| ≤ 180◦.
(5)

Then, the HRTF of the left ear is given by HL(ω, θ) = HR(ω, π −
θ). As an example, Fig. 2 compares the HRTF model with one
sample from an HRTF database [18]. It can be observed that the
binaural cues from the model fit the measured HRTF well.

3. BINAURAL IMU-BASED SOURCE LOCALIZATION
AND SEPARATION

Principally, the proposed algorithm is an extension of the IMU-based
GSC beamformer [11] for the binaural configuration using hearing
aids. In this work, however, we integrate the beamformer with a new
localization system that is able to estimate the DOA of all speakers
while taking the head-shadowing effect into account. The binau-
ral IMU-based GSC beamformer is composed of two parts: first a
GSC with a beamformer Wf (k, b) looking into the target direction,
an adaptive blocking matrix B(k, b), and an adaptive noise can-
celer WV (k, b). Secondly, a frequency-wise localization-tracking
algorithm comprises an MMSE-based localization algorithm that
estimates source angles θ̂(k, b), a head tracking sensor (IMU)
and an estimator of the posterior probability of speaker presence
(Pθsi |θ̂(k, b)) which is updated via the expectation-maximization
(EM) algorithm [19, 11]. All of these components jointly estimate
and track DOAs while the head moves.

Fig. 1. Coordinate system and the proposed processing scheme.
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Fig. 2. The comparison between a measured HRTF [18] and the
HRTF model [13] for θ = 30◦.

3.1. MMSE-based Localization algorithm using ITD/ILD model
In this section we derive an MMSE estimator to localize multiple
speakers using the binaural cues provided by the head model. It has
been shown before that instead of evaluating the generalized cross-
correlation (GCC) we may also evaluate the mean-squared error be-
tween the microphone signals when they are compensated with an
ITD model [20]. Here, we extend the MMSE approach to the joint
ITD/ILD model by means of the following objective function,

J(Ωk, θ) =

∣∣∣∣ XL(Ωk)

|HL(Ωk, θ)|
e−jΩkτL(θ) − XR(Ωk)

|HR(Ωk, θ)|
e−jΩkτR(θ)

∣∣∣∣2
(6)

where |Hm| and τm (m ∈ {L,R}) are the magnitude and the time-
delay of the HRTF for the angle θ, respectively. For simplicity,
the time index b has been eliminated in the equation and Ωk =
2πkfS/M where fs is the sampling rate. Expanding the objective
function in (6) and exploiting the phase φm of the received signals
we have
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J(Ωk, θ) =

∣∣∣∣ XL(Ωk)

HL(Ωk, θ)

∣∣∣∣2 +

∣∣∣∣ XR(Ωk)

HR(Ωk, θ)

∣∣∣∣2 (7)

− 2<
{
|XL(Ωk)|
|HL(Ωk, θ)|

|XR(Ωk)|
|HR(Ωk, θ)|

ej∆φ
}
.

where ∆φ =
(
φR(Ωk)− φL(Ωk)− Ωk(τR(θ)− τL(θ)

)
and <(.)

denotes the real part. The objective function (7) can be factorized as

J(Ωk, θ) =
|XL(Ωk)||XR(Ωk)|
|HL(Ωk, θ)||HR(Ωk, θ)|

(8)

×
(
A(Ωk, θ) +

1

A(Ωk, θ)
− 2<

{
ej∆φ

})
withA(Ωk, θ) = |XL(Ωk)||HR(Ωk,θ)|

|XR(Ωk)||HL(Ωk,θ)|
. For the purpose of minimiza-

tion we remove the first term and thus may simplify (8) to

J̃(Ωk, θ) =

(
A(Ωk, θ) +

1

A(Ωk, θ)

)
− 2 cos(∆φ) (9)

which is now independent of the overall microphone and HRTF
gains. For A(Ωk, θ) > 0 the function f(A) = A(Ωk, θ) + 1

A(Ωk,θ)

is always positive and attains its minimum value of f(A) = 2 for
A(Ωk, θ) = 1 and thus represents the effects of ILD deviations.
Therefore, the objective function J̃(Ωk, θ) attains its minimum
value, i.e. min J̃(Ωk, θ) = 0 when both the amplitudes and the
phases match the head model.
In a more general formulation we add frequency-dependent weight-
ing functions 0 ≤ α(Ωk) and 0 ≤ β(Ωk) that control the contribu-
tion of the phase term and the amplitude term, respectively:

J̃(Ωk, θ) = β(Ωk)
(
A(Ωk, θ) +

1

A(Ωk, θ)

)
(10)

− 2α(Ωk) cos(∆φ)

Since the phase shows ambiguities for high frequencies the phase
contribution can be reduced in this frequency range. Vice versa, at
low frequencies the contribution of the ILD term can be reduced.

In Fig. 3 the performance of the MMSE-based localization ap-
proach using the ITD/ILD model is evaluated in each time-frequency
bin for the estimation of two sources at 30◦ and 90◦ and compared
to the steered response power approach [21] that only uses the ITD
model. The estimation is performed over 5s of the speech data.
The parameters of the MMSE solution were selected as α(Ωk) =
1, β(Ωk) = 0.1 for f ≤2 kHz and α = 0.1, β = 1 for f >2 kHz.
The value of 2 kHz is selected such that the phase difference has a
uniform relation with the DOA considering the distance between the
two microphones [6]. According to Fig. 3, a significant improve-
ment in DOA estimation is attained specially in high frequencies.

Fig. 4 compares the performance of the two localization al-
gorithms for one signal frame. According to this figure we find a
much better concentration of estimated angles around the true source
DOAs for the proposed method. Next, we integrate the localiza-
tion method in the IMU-based GSC beamformer to extract the target
speech signal.

3.2. IMU-based GSC beamformer

The IMU-based GSC beamformer is composed of a GSC beam-
former whose parts are controlled through the localization-tracking
algorithm. The GSC structure consists of a fixed beamformer, an
adaptive blocking matrix and an adaptive noise canceler. We design
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Fig. 3. θ̂(k, b) as a function of time and frequency for the SRP
method (top) and the proposed MMSE method (bottom) for two
sources at 30◦ and 90◦ in a reverberated room.

source position
0° 20° 40° 60° 80° 100° 120° 140° 160° 180°

0

0.1

0.2
SRP with ITD model

source position
0° 20° 40° 60° 80° 100° 120° 140° 160° 180°

0

0.1

0.2
MMSE with ITD/ILD model

n
o
rm

a
liz

e
d
 h

is
to

g
ra

m

Fig. 4. The performance of the two localization approaches for the
estimation of two sources at 30◦ and 90◦ for one signal frame.

the fixed beamformer based on the MVDR approach and the binau-
ral cues attained from the head model. The general solution for the
MVDR beamformer is [6]

HMVDR =
Φ−1
nna

aHΦ−1
nna

(11)

where a =
( |HL(Ωk,θ)|ejΩkτL
|HR(Ωk,θ)|ejΩkτR

)
denotes the propagation vector and

Φnn is the noise covariance matrix. With the assumption of the
uncorrelated noise at both microphones, we obtain the beamformer
output for source S1 as ỸS1 = WH

f (k, b)X(k, b) with

Wf (k, b) =
1

EH

(
|HL(Ωk, θS1)|ejΩkτL(θS1

)

|HR(Ωk, θS1)|ejΩkτR(θS1
)

)
(12)

where EH = |HL(Ωk, θS1)|2 + |HR(Ωk, θS1)|2. The beamformer
is updated by the head tracker during the head rotation.

The blocking matrix provides a noise reference for the adaptive
noise canceler and therefore should block the target signal. Once
the posterior probability of target source presence pθs1 |θ̂(k, b) is es-
timated at each time-frequency bin, the target signal subspace is re-
cursively estimated as follows

P(k, b) = (1− PθS1
|θ̂(k, b))P(k, b− 1) (13)

+ PθS1
|θ̂(k, b)

X(k, b)XT (k, b)∥∥X2(k, b)
∥∥ .

Then, the blocking matrix B is computed by projection to the com-
plementary subspace and selecting the first (M − 1) rows and M
columns of the matrix argument (using operator κ(M−1)M (·) )

B(k, b) = κ(M−1)M (IM×M − P(k, b)) , (14)
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where IM×M is an identity matrix.
The adaptive noise canceler uses a normalized least mean-square

(NLMS) algorithm [22]

WV (k, b+ 1) = WV (k, b) + α
Y ∗S1

(k, b)B(k, b)X(k, b)

||B(k, b)X(k, b)||2 (15)

with an adaptive step-size α =
(

1− PθS1
|θ̂(k, b)

)
αf , where αf

denotes a fixed stepsize factor. The above processing scheme is im-
plemented twice to account for the two sources.

The posterior probability of each source presence is estimated in
each frame b using a Gaussian mixture model (GMM) whose param-
eters are estimated through the expectation-maximization (EM) algo-
rithm. The mean parameters of the GMM that represents the DOA
of the signal are adapted by the head tracker sensor during the move-
ment. The variance and the weighting factors of the GMM are re-
estimated at each frame using the EM algorithm and then smoothed
over previous frames using a first-order recursive system to enhance
the posterior probability estimation [11].

4. EXPERIMENTAL RESULTS
We conducted our experiments in an acoustically treated room with
T60 = 0.5 s. A male and a female speaker were placed at a height of
1.2 m and a distance of 1.5 m from a head acoustics dummy head.
The dummy head was located on a turntable to test four different
head rotation speeds: 7.5◦/s, 15◦/s, 30◦/s, and 45◦/s. Each cy-
cle of rotation starts with one speaker in the front direction of the
dummy head and ends when the other speaker is in the front di-
rection of the head. The audio were recorded by BTE hearing aid
dummies. We attached a Sparkfun 9-axis IMU (SEN-10736) to the
top of the dummy head to measure the relative azimuth position of
the head with respect to the initial position every 0.02 s using open-
source firmware [23]. Audio recordings were made at 48 kHz and
later downsampled to 16 kHz. Speech material was taken from [24].
The total recording time was approximately 9 minutes.

The performance of the algorithm has been evaluated for two
cases, that is, with and without the head movement. It is reported
in terms of the perceptual evaluation of speech quality (PESQ) [25],
intelligibility measurement using the short-time objective intelligi-
bility (STOI) [26] and the mutual information using k-nearest neigh-
bors (MI-KNN) [27], and a separation measurement using signal-
to-interference ratio (SIR) [28]. For the static experiments we con-
sider two speakers located at 60◦, 120◦ and 30◦, 90◦ w.r.t. to the
coordinate system in Fig. 1. For the dynamic experiments we in-
vestigate four head rotation speeds. The results are shown in Fig.
5. We compare the performance of the proposed method (MMSE-
ILD/ITD) to the input signal (NoisySig) and two other methods: The
GSC beamformer controlled by the SRP algorithm using the ITD
model (SRP-ITD) only, and the GSC beamformer controlled by the
SRP algorithm using the free field model (SRP).

The results for the stationary recordings indicate that the adap-
tive beamformer which is controlled by the MMSE-based localiza-
tion algorithm using the ITD/ILD model has better performance than
the other two methods in terms of quality, intelligibility, and sepa-
ration measurements. Therefore, this validates the idea of using the
joint ITD/ILD model in the localization system. Furthermore, when
there are significant head movements (especially with the speed of
15◦/s to 30◦/s that corresponds to realistic scenarios) the proposed
localization-tracking framework can lock to the desired speaker and
consequently is able to extract it while taking the head-shadowing
effect and the head movements into account.
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Fig. 5. The comparison between different methods based on objec-
tive measurements.

5. CONCLUSION

In this paper we contribute a novel binaural IMU-based beamformer
to localize, track, and separate simultaneous speakers. The approach
requires an efficient binaural localization system that is able to es-
timate the azimuth DOA of speakers across a wide range of fre-
quencies. A novel MMSE-based localization algorithm integrates
joint ITD/ILD cues corresponding to their importance in different
frequencies. Next, we utilize a head tracker sensor to measure the
rotational movement of the head and adapt the estimated head posi-
tion to the actual one. The information from the localization-tracking
system is then gathered in a GMM-based posterior probability esti-
mation of source presence in all frequency bins that is subsequently
used to adapt the adaptive part of the GSC beamformer. We also em-
ploy an MVDR structure considering the binaural configuration to
design the fixed beamformer. Informal audio tests as well as objec-
tive measurements over different recordings with and without head
movement corroborate the efficiency of our system. Results aver-
aged over the various recordings with and without head movement
show the improvement of 0.35 PESQ, 0.9 STOI, and 3.5 dB SIR
of the proposed algorithm using the ITD/ILD model with respect to
the SRP algorithm using the ITD model only. The performance of
the system is slightly lower than the performance of the beamformer
using a linear array of microphones [11]. However, the use of ILD
information leads to significant improvements at higher frequencies.
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