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ABSTRACT

An approach for 3D source localization using a spherical
microphone array is proposed that gives improved accuracy
compared to intensity-based methods. First order spherical
harmonics are first used to obtain an initial approximate lo-
calization result and then the initial result is improved based
on an optimized grid search in the local vicinity using the
method of least squares and high-order spherical harmon-
ics. We show that this approach outperforms the first-order
approach and shows strong robustness to reverberation and
noise. The worst average error of 3 degrees was found in
our experiments in the presence of realistic reverberation and
noise.

Index Terms— spherical microphone arrays, localiza-
tion, direction-of-arrival estimation, spherical harmonic, in-
tensity vector

1. INTRODUCTION

Recently the use of Spherical Microphone Arrays (SMAs)
has had growing interest due to their ability to capture sound
fields in three dimensions [1, 2, 3, 4, 5]. In this paper we
address source localization using SMAs, which has a diverse
range of applications in acoustic signal processing such as
spatial filtering, source separation, dereverberation, source
tracking and acoustic environment mapping.

Source localization methods are widely studied and
are generally categorised into three main groups, namely
subspace-based methods (ESPRIT, MUSIC) [6, 7, 8], steered
response power (SRP) [9], and intensity-based methods
[10]. The methods that are based on the first two categories
[11, 12, 13] are computationally expensive due to the need
for an exhaustive search. On the other hand, the intensity-
based methods using pseudo-intensity vectors (PIVs) are
fast to compute and have good localization accuracy for a
single source in relatively dry (low reverberation) environ-
ments [10]. However, as with most localization algorithms,
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as the level of reverberation and the number of sound sources
increase, localization accuracy is reduced [14].

This paper is structured as follow: Section 2 briefly re-
views the background theory of spherical harmonics and Sec-
tion 3 introduces PIVs computed using zeroth and first-order
eigenbeams. Section 4 presents our approach using high-
order eigenbeams to enhance the localization accuracy, Sec-
tion 5 presents a combination of PIV and SRP as a baseline for
comparison, and finally in Section 6 we compare the methods
and evaluate their accuracy and stability.

2. SPHERICAL HARMONICS

Let p (k, r,Ω) denote the sound pressure field at a point
(r,Ω) = (r, θ, ϕ) in spherical coordinates with range r, in-
clination θ and azimuth ϕ, where k is the wavenumber. The
Spherical Harmonic Transform (SHT) of this field is given by
[15, p 192]:

plm(k, r) =

ˆ
Ω∈S2

p(k, r,Ω)Y ∗lm (Ω) dΩ, (1)

where
´

Ω∈S2 dΩ =
´ 2π

0

´ π
0

sin (θ) dθdϕ, and (.)
∗ denotes the

complex conjugate.
The spherical harmonics Ylm (Ω) of order l and degree m

(satisfying |m| ≤ l) are given by [15, p 190]:

Ylm (Ω) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm (cos (θ)) eimϕ, (2)

where Plm is the associated Legendre function and i2 = −1.
The sound pressure field can be reconstructed using the

inverse SHT [16]:

p(k, r,Ω) =

∞∑
l=0

l∑
m=−l

plm(k, r)Ylm(Ω), (3)

where the coefficients plm are often called eigenbeams.
The sound pressure field on the surface of a SMA with

radius ra can be considered as p(k, ra,Ω), which depends on
the array properties, e.g. radius and configuration (open or
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rigid sphere). This dependency is captured by the frequency-
dependent mode strength bl(kra) and is used to form the
mode-strength-compensated eigenbeams alm(k) such that

alm(k) =
plm(k, ra)

bl(kra)
. (4)

For a rigid SMA as used in our experimental study, with
radius ra, the mode strength bl(kra) is given by [15, p 228]:

bl(kra) = 4πil

[
jl(kra)− j

′

l (kra)

h
(2)′

l (kra)
h

(2)
l (kra)

]
, (5)

where jl is the spherical Bessel function of order l, h(2)
l is the

spherical Hankel function of the second kind and of order l,
and (.)

′
denotes the first derivative with respect to argument.

3. PSEUDO-INTENSITY VECTORS

In acoustics, sound intensity is a measure of the flow of sound
energy through a surface per unit area, in a direction perpen-
dicular to this surface. The intensity vector I, which defines
the magnitude and the direction of the energy flow can be de-
termined by calculating the flow of sound energy through the
three unit surfaces perpendicular to the Cartesian axes as [17]:

I(k) =
1

2
<{q∗.v} , (6)

where q is the sound pressure, v = [vx, vy, vz]
T is the particle

velocity in the Cartesian directions (with a dipole directivity
pattern), and <{.} denotes the real part of a complex number.

PIVs are conceptually similar to intensity vectors. They
are calculated using the zero- and the first-order eigenbeams
as [10]

I(k) =
1

2
<

a00(k)∗.

 Dx(k)
Dy(k)
Dz(k)

 , (7)

where

Dν(k) =

1∑
m=−1

Y1m(φν)a1m(k), ν ∈ {x, y, z} (8)

are dipoles steered in the negative direction of Cartesian axes,
given by φx = (π/2, π), φy = (π/2,−π/2) and φz = (π, 0).

A unit vector u(k) in the direction-of-arrival (DOA) is
given by

u(k) = − I(k)

‖I(k)‖
, (9)

where ‖.‖ indicates a vector’s `2-norm.

4. PROPOSED METHOD

PIV-based localization [10] uses only up to the first order
eigenbeams and ignores the higher order harmonics which
also carry spatial information. In this section we propose
a method for source localization that exploits higher order
spherical harmonics, based on single Plane Wave Decompo-
sition (PWD).

Consider a plane wave S(k) = α(k)eiβ(k) with amplitude
α(k), phase at origin β(k) and DOA Ωu = (θu, ϕu). The
SHT of this plane wave is given by

alm(k) = S(k)Y ∗lm(Ωu) + nlm(k), (10)

where nlm(k) is a residual due to noise and reverberation.
Writing (10) for SHT orders l > 1, results in an overde-

termined system. For such a system comprising linear equa-
tions, the method of least squares provides the well-known
least-squares-optimal solution. As in our case the equations
are non-linear and complex, one approach is to use the grid
search method over a possible set of data and find the approx-
imate solution which best satisfies the equations.

A grid search method is computationally expensive espe-
cially when it is performed for a large number of variables.
We can reduce the computation by performing the grid search
over a relatively small set of data in the expected vicinity of
the solution.

In our method, the initial approximate DOA is first calcu-
lated using the PIV method and then a grid search optimiza-
tion procedure is performed across a search window spanning
only the vicinity of the initial DOA estimate using higher or-
der eigenbeams. This second step is more computationally
expensive than the PIV-based computation in the first step,
but this cost is mitigated by restricting the second step only to
the expected solution vicinity as indicated by the first step.

4.1. DOA optimization using high order harmonics

Our DOA estimation method using higher-order will next be
described. Substituting (2) into (10) for l = 0 in a noise-free
case gives

S(k) =
√

4πa00(k). (11)

Substituting (11) into rearranged (10), for an arbitrary
look direction Ω, we have the direction-dependant error
nlm(k,Ω):

nlm(k,Ω) = alm(k)−
√

4πa00(k)Y ∗lm(Ω). (12)

We define a cost function Ψ(k,Ω) as the Root-Mean-
Square (RMS) of errors nlm(k) for l = {0, . . . , L} and
m = {−l, . . . , l} :

Ψ(k,Ω) =

√√√√ 1

(L+ 1)2

L∑
l=0

l∑
m=−l

| nlm(k,Ω) |2, (13)
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Fig. 1. The DOA errors for the PIV (black), second-order AIV (red), third-order AIV (blue), second-order SRP (green) and
third-order SRP (magenta) as a function of reverberation time (a) and sensor noise level (b). The boxes show the median as an
asterix, upper and lower quartiles, and the whiskers extend to 1.5 times the interquartile range.

whereL is the maximum spherical harmonic order considered
in the optimization.

Given this cost as a function of the look direction and
wavenumber, we then perform a grid search across a grid of
discrete look directions {ΩM} around the initial DOA with
the search window size 4ΩM = (4θM ,4ϕM ). Note that
the larger search window size and the higher grid resolution
both increase the accuracy of estimation as well as the com-
putational cost. The optimized DOA Ωs is the direction in
which the cost function Ψ(k,Ωs) is minimised:

Ωs(k) = arg min
Ω

Ψ(k,Ω), Ω ∈ {ΩM} , (14)

which is then converted into Cartesian coordinates to form the
optimized DOA unit vector us(k). The Augmented Intensity
Vector (AIV) Is(k) is formed using (9) and the initial inten-
sity norm ‖I(k)‖

Is(k) = −us(k)‖I(k)‖. (15)

4.2. DOA quantization

The intensity vectors are calculated for each time frame.
Since the grid search is intrinsically discrete in the DOA do-
main, we quantize the estimated directions in azimuth and
inclination separately. Each estimated DOA is quantized to
the nearest DOA sample. For each DOA sample, the overall
intensity is the sum of the intensities of associated quantized
DOAs across all frequencies and time frames. This results in
a 2-dimensional intensity matrix with row as inclination, col-
umn as azimuth, and value as intensity. For a single source,
the overall estimated DOA is the azimuth and inclination of
the global maximum intensity.

5. STEERED RESPONSE POWER

As a baseline for comparison, we introduce SRP that also uses
high order spherical harmonics. In SRP a beam with an arbi-
trary directivity pattern is steered into different look directions
to find the direction with the highest power. The beam pattern
depends on the harmonic orders that is used in beamforming.
The output of the beamformer steered into an arbitrary look
direction Ω is given [18]

y(k,Ω) =

Ld∑
l=0

l∑
m=−l

alm(k)Ylm(Ω), (16)

where Ld is the maximum harmonic order used in beamform-
ing.

For a single active source, the estimated DOA Ωd is given

Ωd = arg max
Ω

∑
k

| y(k,Ω) |2 . (17)

In practice, it is not efficient to steer many beams indis-
criminately in all directions. Therefore a coarse approxima-
tion of DOA can be taken at first, e.g. using PIV, and then
a fine grid search can be performed over the area of inter-
est around the initial DOA. For the sake of equal conditions
in evaluation, the maximum order of beamforming Ld, the
search window, and the initial DOA in SRP is assumed to be
the same as in our method AIV.

6. EVALUATION

The aim of our evaluation is to assess the DOA accuracy im-
provements due to use of high-order eigenbeams, compared
to PIV that uses only zeroth and first-order eigenbeams, and
SRP which also uses high-order eigenbeams. For each ap-
proach, we calculate the DOA error ε (in degree) between the
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true DOA unit vector uo and the estimated DOA unit vector
us:

ε = cos−1
(
uTo us

)
. (18)

An evaluation of the proposed approach is conducted us-
ing simulated data with one active talker at all times. The
Acoustic Impulse Responses (AIRs) of a 32-element rigid
spherical microphone array were simulated using Spherical
Microphone arrays Impulse Response Generator (SMIRgen)
[19] based on Allen & Berkley’s image method [20]. The ar-
ray with radius 4.2 cm is placed at (2.52, 1.97, 3.11) m in
a 5x4x6 m shoebox room. We consider 40 different source
positions at the distance of 1 m from the centre of array with
a DOA that is randomly selected from a uniform distribution
around the sphere. The source signal consists of an anechoic
speech [21] with duration 5 s. A sampling frequency of 8 kHz
was used with frame length of 4 ms and 50% overlap of time
frame. For each source position, the test was repeated for
different level of sensor noise (white Gaussian) with Signal-
to-Noise Ratio (SNR) = {10, 20, 30} dB and different rever-
beration time (RT) with T60 = {0.2, 0.3, 0.4, 0.5, 0.6} s.
The Direct-to-Reverberant Ratios (DRRs) of all trials have
the mean of {4.6, 1.4, −0.9, −2.8, −4.3} dB and the stan-
dard deviation of {2.3, 1.9, 1.8, 1.8, 1.8} dB respectively for
T60 = {0.2, 0.3, 0.4, 0.5, 0.6} s.

Two versions for each AIV and SRP method are used with
different optimization orders L = {2, 3} in (13). The search
window size is (4θM ,4ϕM ) = (10, 10) degrees with the res-
olution of 1 degree in (14). The estimated DOAs are quan-
tized with the resolution of 1 degree in azimuth and inclina-
tion.

Fig. 1 shows the results presented as a distribution of
DOA estimation errors. The boxes show the median as the
asterix, upper and lower quartiles, and the whiskers extend to
1.5 times the interquartile range based on Monte Carlo simu-
lations. Fig. 1 (a) shows the DOA error as a function of RT for
SNR=20 dB. Both of AIVs, compared to PIV and SRP, have
noticeable improvement in the median and range of DOA er-
rors for all RTs. Also the median errors for AIVs change
smoothly while the PIV and SRPs show a sharp increase of
median. Fig. 1 (b) shows the DOA error as a function of sen-

Fig. 2. Median of DOA estimation errors

sor noise level for T60 of 0.5 s. We can see the significant
improvements on the median and the range of errors for both
of AIVs in all cases.

Fig. 2 shows the median DOA error across all the trials for
each approach as a function of RT for all SNRs. The AIVs,
compared to PIV and SRP, have significant improvement for
all SNRs and RTs. As the RT increases the improvement,
compared to PIV and SRP, becomes more noticeable. AIVs
show a better accuracy compared to SRPs although they both
use the same eigenbeams and grid search. AIVs, unlike PIV
and SRPs, have strong robustness to RT and noise as they
change smoothly as RT increases for low and moderate noise
level.

Fig. 3 shows the range of DOA estimation error for each
approach as a function of RT for all SNRs. For SNR of 20
and 30 dB AIVs, compared to PIV and SRPs, are more stable
due to lower range of DOA estimation error.

7. CONCLUSION

We proposed an approach, AIV, to improve the localization
accuracy for spherical microphone arrays using high order
eigenbeams. We have shown that our approach noticeably
outperforms both of the first-order PIV and the high-order
SRP method, which uses the same number of eigenbeams.
It is also shown that our method has significant robustness to
reverberation time and noise. In a highly reverberant environ-
ment with realistic level of sensor noise, the second- and the
third-order approaches respectively show the average error of
3.7 and 2.6 degrees whereas the first-order PIV, second- and
third-order SRP respectively have more than 7.3, 6.8 and 6.8
degrees error. Our approach also shows high stability in DOA
estimation as its estimation error varies by a maximum of 3
degrees whereas PIV and SRPs respectively show 7 and 11
degrees variation for moderate noise level. This study also
shows that using up to the third-order harmonics in optimiza-
tion has a slight advantage of 2 degrees higher accuracy over
the second-order optimization only on high RTs.

Fig. 3. Range of DOA estimation errors
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