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ABSTRACT

In the process of soundfield imaging, as defined in the litera-
ture, a microphone array is subdivided into overlapping sub-
arrays and soundfield images are obtained by juxtaposition
of spatial spectra computed from individual subarray data. In
this paper we show that the whole process can be conveniently
seen as a linear transformation applied to array data. This lin-
ear transformation embeds a nonlinear mapping to cast the
directional information in a more convenient domain: the ray
space. We show by simulations that the proposed formulation
is suitable for fast implementation of the soundfield imag-
ing operation, and, more specifically, for the localization of
acoustic sources.

Index Terms— Microphone arrays, soundfield imaging,
plenacoustic function, array signal processing, ray space

1. INTRODUCTION

Soundfield imaging is the process of analyzing the spatial fea-
tures of an acoustic field and depicting them in a form that is
suitable for providing an intuitive source of information. Mi-
crophone arrays provide the technological mean to achieve
the imaging goal, and they have been extensively studied in
the past few years. In [1, 2, 3, 4, 5], approaches based on com-
pact spherical microphone arrays are presented. Although
these approaches provide accurate estimates of the direction
of arrival of a sound source, they do not provide a direct way
to infer the absolute location of the sound source.

In this work we adopt the plenacoustic representation of
the sound field first presented in [6, 7] and then adopted for
signal processing tasks in [8, 9, 10]. More specifically, in
this paper we consider the soundfield imaging process as pre-
sented in [11, 12], regarded to as the process of acquiring
directional sound field components impinging on a linear mi-
crophone array. This process can be conceptually divided into
four steps: 1) a linear array of microphones is subdivided into
overlapping subarrays composed by adjacent sensors; 2) data
collected by each subarray are used to form an estimate of the
magnitude of spatial spectrum through a beamscan operation
[13]; 3) individual spatial spectra are mapped to the ray space,
a geometric space where coordinates are the parameters of a

line [14]; 4) the soundfield image is built by juxtaposition of
the spatial spectra.

One of the main advantages of the soundfield imaging ap-
proach in [12] is that acoustic primitives appear in the sound-
field image as linear patterns. This is a known property of the
ray space, as demonstrated in [14], and a number of appli-
cations have been presented exploiting that property. In [12]
the authors consider a two-dimensional propagation scenario
composed by a single linear array of microphones; in this sce-
nario they exploit the structure of the ray space to perform
source localization through pattern analysis in the soundfield
image. The use of high-resolution techniques to obtain esti-
mates of the spatial spectra has been investigated in [15]. In
[16] the authors study the use of soundfield images to estimate
the radiation pattern of a violin. In [17] soundfield images are
exploited for acoustic signal extraction purposes. In [18] an
extension to multiple linear arrays is provided. In [19] the
application to soundfield rendering is presented.

In this paper we revise the soundfield imaging process to
show that it can be cast in the form of a linear transforma-
tion of array data. The simple scenario of a single linear array
of microphones is considered here, and, following [12], we
use a two-dimensional euclidean space as the domain of the
soundfield image. We remark that the presented formulation
can easily be extended to other scenarios (e.g. multiple lin-
ear arrays, as in [18]), as the structure of the transformation
proposed here is not altered by the specific domain (the ray
space) where directional information is mapped. In particular,
choosing a different ray space as a domain for the soundfield
image only affects the mapping operation, which is indepen-
dent of the transformation of array data. Another difference
with respect to [12] is that in this work we consider spatial
spectra with amplitude and phase; in order to highlight this
difference, in the following we adopt the term soundfield map
to denote a complex-valued soundfield image.

The rest of the paper is structured as follows. Sec. 2 in-
troduces the adopted model for array signals. Sec. 3 gives a
review of the soundfield imaging process. Sec. 4 derives the
linear transformation to obtain the soundfield map. Sec. 5 an-
alyzes the computational complexity of the soundfield map-
ping operation. Sec. 6 presents a simulative localization ap-
plication exploiting the presented formulation. Finally, Sec. 7
draws some conclusions and Sec. 8 shows prior work.
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Fig. 1: Microphone array and notation.

2. SIGNAL MODEL

Consider the setup depicted in Fig. 1. A uniform linear array
of M microphones is placed on the y axis between y = −q0

and y = q0, so that the ith microphone is located at mi =
[0, q0 − 2q0(i − 1)/(M − 1)]T , i = 1, . . . ,M . The ar-
ray is subdivided into I = M −W +1 maximally overlapped
subarrays, each composed byW (odd) adjacent microphones.
The set {mk}, k = i, . . . , i + W − 1 denotes the locations
of the microphones belonging to the subarray with reference
point at mi. We remark that this is a slightly different choice
with respect to previous works (e.g. [12]), where the refer-
ence point is set to the center of the subarray; nonetheless, the
approach proposed here can be extended effortless to handle
different choices for the subarray reference point. The dis-
tance between microphones is d = 2q0/(M − 1).

The microphone array observes a sound scene composed
by L, possibly moving, acoustic sources, whose location is
denoted by pS,l(t) = [xS,l(t), yS,l(t)]

T , l = 1, . . . , L, where
t denotes time. A short-time analysis on microphone signals
is performed, so that the signal acquired by the ith micro-
phone is transformed in

xi(τ, ω) =

∫ ∞
−∞

xi(t)w(t− τ)e−jωt dt, (1)

where w(t) is a suitable window function. In the following
we omit the dependency on time and frequency.

Consider now the ith subarray. Short time-frequency sig-
nals acquired by microphones are collected in the vector

xi = [xi, . . . , xi+W−1]T , (2)

which can be modeled as

xi = Gisi + vi, (3)

where si = [s1,i, . . . , sL,i]
T ∈ CL×1 is the vector containing

the L source signals and v ∈ CW×1 is additive noise. The
matrix Gi ∈ CW×L collects the acoustic transfer function
between sources and microphones. Assuming that the size of
the subarray is small enough so that the source is in the far
field with respect to it, the acoustic transfer function can be

modeled as [20, Eq. 6.2.21]

Gi = [g(θi,1), . . . ,g(θi,L)],

g(θi,l) = [1, e−j
ω
c d sin(θi,l) . . . , e−j(W−1)ωc d sin(θi,l))]T .

(4)
The angle θi,l, according to Fig. 1, denotes the angle under
which the ith subarray sees the lth source

θi,l = arctan

(
yS,l − q0 + 2q0(i− 1)/(M − 1)

xS,l

)
. (5)

3. SOUNDFIELD MAPS

In [12], for the purpose of estimating the spatial spectrum
from data acquired by the ith subarray, the authors employ
multiple beamforming operations, steered towards a pre-
selected grid of directions {θγ}, γ = 1, . . .Γ, which is the
same for each subarray. In order to focus array data towards
the grid of directions {θγ}, the steering matrix A ∈ CW×Γ

is employed for all subarrays, and it can be expressed as [20,
Eq. 6.2.21]

A = [a(θ1), . . . ,a(θΓ)],

a(θγ) = [1, e−j
ω
c d sin(θγ) . . . , e−j(W−1)ωc d sin(θγ))]T .

(6)

Each beamformer output composes the spatial spectrum
pi(θ), which is then mapped onto the ray space P . As it has
been described in [14], sound sources appear in P as lines:
this feature makes it convenient to represent spatial spectra
onto the ray space. In particular, each sample pi(θγ) of a spa-
tial spectrum encodes the (complex) amplitude of the acoustic
ray crossing mi with angle θγ . We remark that this is a differ-
ent choice with respect to [12], where the temporally-average
power output of the multiple beamformers were considered.
With this in mind, in this work we use the term soundfield
map instead of the term soundfield image adopted in [12].

In [12] the authors identify an acoustic ray crossing the
microphone array with the parameters (m, q) defined as

mγ = tan(θγ), qi = q0 − 2q0(i− 1)/(M − 1), (7)

which are the slope and the intercept on the y axis of
the acoustic ray, respectively. We define the matrix P ∈
R(M−W+1)×Γ, which stores the values of the soundfield map
as

[P]i,γ = pi(θγ). (8)

In applications where a wideband estimate of the sound-
field map is needed, the authors propose to compute the
soundfield map for a discrete set of frequencies {ωk}, k =
1, . . . ,K, and then use the product of their geometric and
harmonic means, as proposed in [21]. In the following,
the narrowband soundfield map at temporal frequency ωk is
denoted by P(ωk), while the wideband soundfield map is
denoted by P̃.
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Fig. 2: Magnitude |P| of an illustrative soundfield map.

For illustrative purposes, Fig. 2 shows the magnitude of
the wideband soundfield map corresponding to two sound
sources. The black lines RpS,l, l = 1, 2, represent the
linear pattern corresponding to the lth sound source, i.e.
RpS,l : yS,l = mxS,l + q.

4. DERIVATION OF A LINEAR OPERATOR FOR
SOUNDFIELD MAPPING

With reference to the signal model introduced in Sec. 2, in
this section we derive a linear operator that allows us to com-
pute a soundfield map starting from array data. A sample of
the spatial spectrum for the ith subarray is defined as the in-
ner product between the subarray data and the corresponding
steering vector [20, Eq. 6.3.4], i.e.

pi(θγ) =
1

W
〈xi,a(θγ)〉 =

1

W
a∗(θγ)xi. (9)

From (9), the spatial spectrum for the ith subarray can be writ-
ten as

pi =

pi(θ1)
...

pi(θΓ)

 =
1

W

a
∗(θ1)xi

...
a∗(θΓ)xi

 =
1

W
A∗xi, (10)

where A is defined in (6).
As reviewed in Sec. 3, the soundfield map is defined as

the matrix whose rows are the spatial spectra estimated from
each subarray, i.e.

P =
1

W


p∗

1

...
p∗
M−W+1

 =
1

W


(A∗x1)∗

...
(A∗xM−W+1)∗

 =
1

W


x∗
1A

...
x∗
M−W+1A

 ,
(11)

Upon defining the matrix X, which has subarray data on each
column, i.e. X = [x1, . . . ,xM−W+1], we can rewrite (11) in
the more compact form

P =
1

W
X∗A. (12)

As it provides a way to compute the soundfield map as
a linear combination of array data, (12) can also be inverted
in order to synthesize array data given a soundfield map. In
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Fig. 3: Computational complexity as a function of W . M =
32, Γ = 90.

particular, we define the right inverse of the matrix A, such
that AA† = I, as

A† = A∗ (AA∗ + λI)
−1
, (13)

where Tikhonov regularization is adopted. Using the defini-
tion in (13), we can obtain array data as

X∗ = WPA†. (14)

5. COMPUTATIONAL COMPLEXITY

Equation (12) is important since it provides a way to compute
the soundfield map as a linear combination of array data. This
fact has a relevant impact on all applications involving sound-
field imaging, since it provides a simple and fast computa-
tional schema. In particular, the computational complexity of
(12) is

O((M −W + 1)WΓ) (15)

We notice that the computational complexity is linear with
respect to the total number of microphones M and with re-
spect to the number Γ of angular directions. On the other
hand, from (5) follows that the computational complexity de-
pends on the number W of microphones in each subarray in
a quadratic fashion. We observe that the computational com-
plexity reaches its maximum when W = (M + 1)/2 (M
odd) or for W = M/2 (M even). Figure 3 shows the compu-
tational complexity, expressed in FLOPS as a function of W
for an illustrative array composed by M = 32 microphones,
while Γ is set to 90: notice the maximum at W = 16.

6. SIMULATIONS

In order to validate the proposed formulation, we exploit the
computational ease of (12) to simulate a localization system
based on soundfield maps. In particular, we consider a mov-
ing sound source that follows a trochoidal trajectory

xS(t) = a
t

R
− b sin

(
t

R

)
+ 0.5, yS(t) = a− b cos

(
t

R

)
,

(16)
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with a = 0.1, b = 0.4, R = 1 m. The source signal is ob-
served over a time interval of T = 20 s with a sample rate
Fs = 16 kHz. Wideband soundfield maps are computed in
the frequency band between 300 Hz and 5 kHz. The source
signal s(t) is a white random variable, so that its Fourier
transform is s(ejω) = 1. The microphone array is com-
posed by M = 16 microphones between −q0 = −0.5 m
and q0 = 0.5 m, thus resulting in an interelement spacing
equal to d = 6.67 cm. The number of microphones in each
subarray is fixed to W = 5. Localization is performed on
short-time data segments obtained by (1) with τ = n0.25 s,
n = 0, . . . , N − 1, N = 80; the time domain window func-
tion employed is a rectangular window. In this work we do
not perform a tracking of the acoustic source, as, instead, it is
done in e.g. [22] using particle filtering or in [23] using an ex-
tended Kalman filter. The simulative setup is shown in Fig. 5,
where the black dots illustrate the microphone positions in the
array and the red curve depicts the source trajectory.

The localization operation is performed as outlined in
[12]. In particular, given the wideband soundfield map at time
τ , denoted as P̃(τ), peaks are identified in each row at loca-
tions m̂i, i = 1, . . . ,M −W + 1. For this purpose, we define
the matrix M̂ = [−m̂,1], with m̂ = [m̂1, . . . , m̂M−W+1]T ,
being 1 = [1, . . . , 1]T ∈ R(M−W+1)×1; we define also
the vector q = [q1, . . . , qM−W+1]T collecting the ordinates
of the reference microphones for all subarrays. With the
above definitions, the source position is estimated with a
least-squares approach as

p̂S = (M̂TM̂)−1M̂Tq. (17)

A Monte-Carlo simulation with Ntrials = 100 trials for
each time step is performed to assess the localization accu-
racy. For this purpose, a Gaussian noise is added to micro-
phone signals as in (3), such that the signal to noise ratio is
set to 30 dB. Localization accuracy is evaluated through the
root-mean-square localization error

RMSE(τ) =

√√√√ 1

Ntrials

Ntrials∑
η=1

|pS(τ)− p̂S(τ)|2. (18)

Figure 4 shows the RMSE for each time step. We observe
that, as expected, the localization is accurate when the sound
source is close to the microphone array, while it degrades as
the source moves away: this is an expected behavior, deter-
mined by the limited aperture of the microphone array.

Figure 5 shows the result of the localization procedure. In
particular, the blu crosses depict the estimated source posi-
tions as a function of time, with reference to the actual source
trajectory depicted by the red curve.

We remark that this simulation is not meant to be a de-
tailed anlysis of the localization performance for the sound-
field imaging approach. The motivation of this section is to
depict the role of the linear operator proposed in this paper in
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Fig. 4: Root-mean-square localization error. The blue line
connects adjacent samples.
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Fig. 5: Localized source positions for a single realization.

a more complex system, involving other tasks. In particular,
we have shown that soundfield maps can be computed in an
on-line fashion even on modest computing platforms.

7. CONCLUSIONS

In this paper we have shown that the whole process of sound-
field mapping can be expressed as a linear transformation of
the array data. We have reported an analysis of the compu-
tational complexity, which serves as a rule-of-thumb in guid-
ing some design choices (e.g. total number of microphones,
number of microphones in each subarray, number of angular
directions). In order to show the applicability of the proposed
formulation in a practical context, we have simulated a local-
ization system based on soundfield maps.

8. RELATION WITH PRIOR WORK

The plenacoustic representation for sound fields has been in-
troduced in [6, 7] and then extended in [8, 9, 10]. This pa-
per presented a computationally efficient formulation for the
soundfield imaging process introduced in [11, 12], based on a
linear array of microphones, which allows us to estimate the
absolute location of a sound source. This approach proved its
validity for applicative purposes, as reported in [15, 16, 17].
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