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ABSTRACT

This paper describes sound source localization (SSL) based on
deep neural networks (DNNs) using discriminative training. A
naive DNNs for SSL can be configured as follows. Input is the
frequency-domain feature used in other SSL methods, and the struc-
ture of DNNs is a fully-connected network using real numbers.
The training fails because its network structure loses two important
properties, i.e., the orthogonality of sub-bands and the intensity- and
time-information saved in complex numbers. We solved these two
problems by 1) integrating directional information at each sub-band
hierarchically, and 2) designing a directional activator that could
treat the complex numbers at each sub-band. Our experiments indi-
cated that our method outperformed the naive DNN-based SSL by
20 points in terms of the block-level accuracy.

Index Terms— Sound source localization, Deep Neural Net-
works, Frequency domain, Discriminative training

1. INTRODUCTION

Sound source localization (SSL) is the most fundamental function
for autonomous robots (or systems) [1] because it enables them to
detect sound events and to recognize sound locations. These two
kinds of awareness are essential for robots to start actions and to
determine whether they should react to events or not. The two main
difficulties with SSL on robots are: 1) restrictions on the position and
the number of microphones and 2) complicated acoustic properties
that depend on their bodies. The SSL on robots should be able to
overcome these two difficulties.

The conventional approaches to SSL in the frequency domain
obtain “steering vectors” (SVs) by using physical models [2, 3, 4,
5] or measurements [6] (Fig.1). The SVs are representations of
the intensity- and time-difference between microphones from ref-
erence points in space to robots, and are used in the localization pro-
cess. Here, the SVs are usually complex numbers to treat intensity
and time (phase) information simultaneously. The former calculates
the SVs analytically by using geometrical information, and achieves
high-resolution SSL under special microphone arrangements. The
latter can be applied to any microphone arrangements because it
measures actual SVs at each reference point by using reference sig-
nals, such as a Time-stretched pulse (TSP). Although the latter ap-
proach resolves the two difficulties, the location estimator based on
likelihood has various parameters and optimal parameters vary by
the distance and the height of reference points.

Our approach is entirely based on the discriminative machine
learning from obtaining the SVs to learning of the location esti-
mator. This approach estimates the posterior probability of sound
location directly without thresholding parameters. Since all param-
eters are optimized for each robot, the accuracy of localization is
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Fig. 1. Approaches for sound source localization

expected to be improved from that of previous methods. The various
training data can be recorded by the robot or generated by using a
statistical generative model. Note that it only requires the observed
sound signals and the correct “labels” that a developer has designed
for various applications. Such labels may not only include points in
space, “30° from front”, but also rough labels such as “Far in front”.

We propose two techniques to apply deep neural networks
(DNNs) to SSL in the frequency domain: 1) a hierarchical integra-
tion of directional information, and 2) a novel directional activator
that can deal with complex numbers. Here, the directional activator
is like an expression of SVs in DNNs, and it can utilize both of
intensity and phase information. The activator is designed based on
the orthogonality used in Multiple Signal Classification (MUSIC)
[7]. Therefore, we adopt the features used in MUSIC as the input
of DNNs. First, the directional image of real numbers is calculated
by directional activators at each sub-band. Then, these directional
images are hierarchically integrated step by step. The experiments
reveal the robustness of DNNS in terms of the speaker. The analysis
of obtained DNNs’ parameters will contribute to applying DNNs to
other frequency-domain signal processing.

Another applicable structure of DNNs is a fully-connected net-
works, and it fails in the case of the frequency-domain SSL. This is
because each sub-band in the frequency domain is usually orthog-
onalized, and fully-connected networks destroy such a meaningful
orthogonal structure. The input of DNNs in automatic speech recog-
nition [8, 9, 10, 11] and speech enhancement area [12, 13, 14], are
usually features calculated from the power spectrum. Since they are
correlated at neighboring sub-bands, fully-connected networks work
well as a speech feature extractor.

The DNNs with real numbers also fails due to the loss of phase
information, and the importance of phase information is mentioned
in [15]. Here, two solutions for complex number have been pro-
posed: 1) complex-valued NNs (CVNNs) [15, 16, 17] and 2) real-
valued feature with DNNs [18]. Some of them uses likelihood cal-
culated from CVNNS, and others uses binaural features for the input
of NN at each sub-band. The probabilistic aspect of CVNNS is not
discussed because its output is complex value. Therefore, their tech-
niques cannot be applied directly to our situation of multi-channel
SSL and posterior probability estimation.
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2. FUNDAMENTAL METHODS

This section introduces the principle of MUSIC-based SSL and
DNN:s, and the problem with naive DNN-based SSL. Hereafter, all
sound signals have been analyzed by short-time Fourier transforma-
tion (STFT) and all variables in models are represented in the STFT
domain with frame index ¢ and frequency-bin index w [19].

2.1. Sound Source Localization based on MUSIC

The sound arrival process from M (M < N) sound sources to the
sound signals @ [t] = [Tw,1[t], .., Tw,n [t]]T Teceived at N micro-
phones embedded on a robot are modeled as a linear time-invariant
system. The observed vector @, [t] is represented as

M
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where $.,m [t] represents a m-th source sound signal and n.,, =
[Paw,1[t], ..., nuo,n [E]T is a noise signal vector. The @, (r) =
[@,1(T), ..., @~ (r)]T is an SV that represents the transfer func-
tion from the reference sound position, 7, to each microphone.
In other words, this vector includes the intensity- and time-
difference information of a signal among the microphones.
MUSIC uses the orthogonality of eigenvectors of the correlation
matrix Ry, = E[x,[t]X [t]. Here, the notation, -7, denotes the
Hermitian transpose, and E[-] means an expectation operator.

The linear space spanning correlation matrix R, can be
divided into two orthogonal sub-spaces: the signal space, S,
and the noise space, S,,. The eigenvectors and eigenvalues of
R, are obtained by applying eigenvalue decomposition (EVD);
E, = [ew1,....,€wnN] € CN*N for the former and A, =
diag[Aw,1, ..., Aw,n| for the latter. The eigenvalues are sorted
in descending order. Here, e, € cN (i = 1,...,M) corre-
sponds to a basis set of signal space Ss and e, ; € CV (j =
M + 1, ..., N) corresponds to that of noise space S,. This means
that @l (rn)ew,; = 0 (ew,; € S») holds over the correct sound
positions, 7, (m = 1,..., M). Note that these eigenvectors have
already been normalized in terms of features. The actual estimator
using this orthogonality can be seen in [20].

2.2. Model and Learning of Neural Networks

The structure of NN is defined recursively on the layer index, . The
input vector, xX; = [T1,1, .., :El,Nl]T e RV, is projected into out-
put vector X; 41 = [xl“,l, ...,IHLNH_I]T € RNt+1 by arbitrary
function f;. The final output of the L-th layer can be recursively
described for { = 0, ..., L — 1 given the initial input vector, Xo.

fi(x1; 61) 2)

where 0, is a parameter set of f;. There are several types for the
function, f;. For example, the affine transformation, W;x; + by, is
used to represent network links, and the sigmoid function, 1/(1 +
exp(—x1,:)), is used to express the activation of each vector.

Back propagation is applied to optimize the parameters, 6;, by
using the training data set. Given the cost function, F, and supervi-
sory signal vector r = [rq, ..., rNL]T € RVE, the parameter update
rules can also be recursively described. After the initial error vec-

Xi+1 =

tor, €, = (g—’i (r,x L)), is calculated, we update each parameter for
l =L —1,...,0 with a learning parameter 7 as:
ofT ofl

€ = i(xl)eprl, 01 < 01 — na—ell(xl)EH,l. (3)
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Fig. 2. Network structure of our DNN-based SSL

2.3. Training of DNN-based SSL and Its Problems

Since MUSIC estimates sound locations by using eigenvectors, the
main role of DNNs for SSL is obtaining the mapping from eigenvec-
tors ey,,; to the probability, px(k = 1, ..., K), of reference positions
ri(k = 1,...,K) or labels. The naive configuration of DNNs is a
fully-connected network with real numbers that is often used in the
speech recognition and speech enhancement area. Here, complex
numbers are considered to be two dimensional real numbers. How-
ever, the training of this configuration for DNNs does not work well
and results in insufficient accuracy.

The two problems with these types of DNNs is loss of: 1) or-
thogonality of sub-bands and 2) intensity- and time-information in
complex numbers. Our features at each sub-band are almost or-
thogonalized by FFT unlike those of speech recognition or speech
enhancement in the power spectrum domain. Therefore, applying
DNNs with fully-connected network and real numbers to our fea-
tures wastes the structural information of each value, especially time
information, which is important in SSL.

3. NETWORK CONFIGURATION FOR SOUND SOURCE
LOCALIZATION

This section explains the hierarchical structure and complex-number
activator to solve problems in training DNNs. First, the network ar-
chitecture is explained, and then the details on the activator that was
designed are provided. Note that complex-number networks can be
expressed by real-number networks with special structures. There-
fore, complex numbers are just used as mathematical expressions.

3.1. Network Architecture for Frequency Domain Processing

Our proposed network architecture is based on a hierarchical struc-
ture among sub-bands, and there is an overview of this in Fig. 2.
The process can be divided into two phases: 1) the extraction of a
directional image and 2) the propagation and integration of a direc-
tional image. Here, the directional image is an activation pattern that
differs according to the SVs of sound sources.

The directional image is extracted by using the orthogonal-
ity of the input eigenvectors and the SVs in DNNs, which is the
same as MUSIC does. First, the input signals are analyzed by
STFT and the correlation matrices R, are calculated at each fre-
quency bin w. Then, EVD is applied and we obtain the eigen-
vectors, e,,;. These eigenvectors are treated as the input vector,
Xi,w = [€5 .2, eg,N}T, at frequency bin w. We calculate the
directional image X2 ., from eigenvectors at each w, whose details
are explained in the next subsection.



The directional images are integrated in three hierarchical steps
using the ordinal network structure based on the affine transforma-
tion, sigmoid, and soft-max function. This is because the directional
image at neighboring sub-bands has a correlation to some extent.
The first step is the integration at each sub-band, and the sub-band
layer at each sub-band outputs new directional image. The second
step is the integration among sub-bands, and the input of the par-
tially integrated layer connects directional images from several sub-
bands. For example, when the output of the sub-band layer at w
is noted by y2,w, the input of the [-th partially integrated layer is
X3, = [y%:wl,...,y%:wh}T. Here, w; and wy, represent the lower
and upper index for the integration. These layers also output direc-
tional images. The last step is the integration of the outputs from the
sub-integrated layer, and we call it as integrated layer. Its inputs, x4,
have the same structure as the partially integrated layer.

3.2. Model and Training of Directional Activators

Work that remained was the modeling and training of directional
activators that output the directional image. We designed the activa-
tors using the orthogonality of eigenvectors and SV used in MUSIC.
The DNNS learn these directional activators that work like the SVs
through discriminative training.

We define the directional activators by using latent vectors
a;(]|aj|| = 1) that are expected to behave as the SVs. These activa-
tors are based on the following inner product that can simultaneously
measure intensity and time-differences.

|a™ x|
x|l

If the latent vector, ay, corresponds to a true SV of position ry in
an ideal case, the correct directional activator returns 1 because the
eigenvectors and correct SV are orthogonal. The directional image
is defined by the connected outputs of all activators with all eigen-
vectors in noise space, X2, = [fw(eu,,z)T, e fu,(ewTN)T]T. After
this, we will summarize the parameters into a matrix representation,
A, = [aw,..., aw,N], at frequency-bin w. This activation process
is similar to the combination of the linear projection by A, and the
activation by absolute function in the matrix formation.

The propagation error and update rule of the parameters of di-
rectional activators are obtained by calculating gradients.

ofH

£u(x) = [f(5a0.), - S a0 N)]", flxsa) =1—

__1 i _ X7
o (Xewirt = ™ (Awdlag[ew] |X‘¢w) €wit1, (5
ot . .
BT(X)EU),I+1 = 7|§§_‘ (05 + Awdlag[¢w]) dlag[ew,l+1] (6)

Here, 6 and ¢ represent the phase and similarity vector defined as:
T T
0. — au 1X afjf,Nx o= a1 x| |as, n x| %)
w— T R R R w— R T T
lag x| Jag vx] | [Bell " Il

After the parameters are updated, the norm of each activation vector
ay, is normalized to 1. The Eq. (5) is not used in this paper because
there are no parameters before the layers of directional activators.

4. EXPERIMENTS

4.1. Experimental setups

Recording conditions: All speech data were generated by using im-
pulse responses recorded in a real environment. Four-channel im-
pulse responses were recorded at 16 kHz in both an anechoic room
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and a reverberant room with an RT2o of 640 [ms] by using micro-
phones embedded on a humanoid NAO [21]. RTzp means the re-
verberation time. We denoted the loudspeaker positions as (distance
[cm] and height [cm]). The combinations of patterns for recording
impulse responses were set to (30,30), (90,30) and (90, 90) to take
into consideration situations in which people talked to the robot from
different distances and heights. The resolution of the directional an-
gle was 5° (72 directions), as shown in Fig. 3. There were a total of
216 recorded impulse responses.

Feature extraction: The parameters for STFT were set to be the
same for all the experiments: the size of the Hamming window was
256 points (16 [ms]) and the shift size was 80 points (5 [ms]). The
block size for calculating R,, was 40 (200 [ms]). The bandwidth
used for features was set to [750 — 4750] [Hz] and 64 frequency-
bins were used for SSL. These configurations are listed in Tab.1.
Data for training and test set: The speech data for training came
from 49 male and 49 female speakers in the Acoustical Society of
Japan-Japanese Newspaper Article Sentences (ASJ-INAS) corpora',
and one hour of data was used. The data for test came from one male
and one female speaker, which was different from the training data
in the same corpora. There was an average of seven utterances per
speaker, and the content was phonetically balanced sentences. The
training and test set generated by using impulse responses included
speech signals from a combination of 72 directions (5° intervals) x 3
positions x speaker patterns. After the speech signal was generated,
we added white noise of 0, 20 and 40 dB to check the robustness of
each method. The total number of labels was 217. The label ID “0”
represents “no sound source”, the others represent source locations;
IDs 1-72 for the azimuth 0-355° at (30, 30), IDs 73-144 for the
azimuth at (90, 30) and IDs 145-216 for the azimuth at (90, 90),
respectively. The correct labels are added based on voice activity
block by block (every 200 [ms]).

Configuration of DNNs: The configuration of naive DNNs was
that of L = 7 layers with 1024 hidden nodes. There were four
dimensions and 216 directional activators in the w-th sub-band in
our DNNs. The 216 was the same number of recorded impulse re-
sponses for the analysis. There were eight blocks in the partially-
integrated layer and integrated layer. The network sizes of the sub-
band, partially-integrated and integrated layer corresponded to 217 x
648, 217 x 1736, and 217 x 1736. There were a total of 960 dimen-
sions of features for DNN input. The output dimensions were 217 to
classify all labels. The directional activators are initialized at random
and their norms are normalized to 1. The initial weight of W3 ,, was
like an identity matrix; the element of the ¢-th row and i-th column
was 1, and others were Gaussian noise with variance 0.0001. The
initial weights of the partially-integrated and integrated layers were
obtained by connecting eight such weights. These initial parameters
empirically enable us to interpret the trained parameters easily. The
cross-entropy was used as the cost function E.

Evaluation criteria: We calculated the accuracy of classification
at the block-level. The three methods we compared were are naive
DNN-based SSL, the proposed SSL, the basic MUSIC used in [20],
the Bartlett’s and Capon’s beamformer [22]. The broadband spa-
cial/MUSIC spectrum is calculated by summing the narrowband
spectra. We chose a best threshold of the broadband spatial/MUSIC
spectrum for each test set for the discrimination of source existence.
Note that this criterion is not based on the geometrical distance.
We checked robustness against 1) speaker, 2) SNR of white noise
and 3) reverberation. We prepared two kinds of data under different
conditions, i.e., those in an anechoic and a reverberant room.

Uhttp://research.nii.ac jp/src/INAS.html



Table 1. Parameters of experiment

Parameter [ Value
Number of sources O or 1 at each block
Noise signal Gaussian

Training 49 males, 49 females
Wpio0,20) Test 1 male and 1 female
obot (3030 90cm ) (speaker open)
o (#shio0,30) Sampling frequency 16kHz
g:;) ]30“3"0Cm Frame length and shift 16 ms and 5 ms
3007 90em Block size 200 ms (40 frames)

Bandwidth (W, W) [570 4750] Hz

Fig. 3. Positions

4.2. Results and Analysis

The accuracy of each method is summarized in Table 2. Here, Ane-
choic in Test means an environmentally closed test, and Reverberant
means an environmentally open test (RT2p = 640[ms]). Note that
the percentage of “no sound source” blocks is 45.6%, and the total
number of blocks in the test set is 108432.

First, the maximum accuracies of Bartlett, Capons and MUSIC
in the anechoic room were 80.6, 81.9 and 83.8%, respectively. Since
the optimum threshold parameters of these three methods vary at
each distance and height, it is difficult to perform best with one
threshold parameter. The main reason of the low performance in
the reverberant room is that the peak of the estimator moved slightly
from the correct location.

Second, our method outperformed the naive DNNs in all cases.
The accuracy of naive DNNs was a maximum of 67.8% at an SNR
of 40 dB in the anechoic room, and the accuracy is less than that of
MUSIC. On the other hands, if we use our DNNSs trained by data
matched SNR with test set, its performance becomes better than that
of MUSIC. Accuracies of all methods in the reverberant room de-
crease compared with those in the anechoic room. If we train DNNs
by using reverberant and multi-SNR data, its performance will im-
prove. Our preliminary result showed that the training of DNNs with
multi-SNR data succeeded. Therefore, the multi-condition training
(MTC) is a key technique for the further improvement. The main
problem will be how we generate various kinds of reverberant and
noisy data appropriate for each robot (or system).

Figure 4 have the images of smoothed directional activators
(=SVs) and network weight W obtained with the SNRs of 0 and
40 dB training sets. The images of a) and b) are the trained and the
measured SVs of microphone channel 3. Although the trained SVs
look like the measured one, the some regions differ from those of
the measured one (circular dashed line). This indicates that the SVs
are adapted to robots through training. We can see the importance of
each frequency block and filter pattern of them from the image c).
Since the power of speech signal corresponds to high-freq block is
lower than that of low-freq. block, we can understand that the DNNs
automatically weight information from low-freq. block. It is inter-
esting that the striped patterns become detailed at high-freq. block.
These filter patterns work as the integrating and smoothing filter of
the directional images obtained from each block.

4.3. Remained Issues

Since the robustness against speaker was confirmed. we should im-
prove the robustness against 1) reverberation, 2) non-Gaussian noise,
3) unknown direction and 4) the number of sound sources. The
common approaches for these robustness, especially for 1) and 2),
are MCT based on data generation and DNNs’ configuration. The
construction of the generative model for training is an important
topic for our machine learning approach. The generation of rever-
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Table 2. Block-level accuracy of classification at each SNR (%).

Training Test
Anechoic Anechoic | Reverberant
Method SNR (dB) 40 20 0 [ 40 20 0
Bartlett — 809 80.5 60.7 | 457 457 457
Capon — 81.2 80.7 608 | 457 47.0 457
MUSIC — 773 838 689 | 458 514 488
Naive 40 67.8 483 456 | 458 456 456
DNNs 20 533 653 470 | 379 477 457
0 220 320 502 | 0.8 225 453
40 893 553 456 | 457 456 456
Ours 20 578 869 53.6 | 459 51.6 458
0 544 623 742 | 190 373 48.1

a) Trained SVs (ch 3)

) Trained weights of the integrated layer
el 216 —

Label ID

L s 0.
"0 Reference points (index)215 0

b) Measured SVs (ch 3)
63 (3:0,‘30) (90,30) | (90,90) (D, H) 514, (30,30) (90,39) L (90,9Q) (30,30) | (90,30) l(90,90) (D, H)

1735

Low freq. block High freq. block
-
E & e o - A I I

A

e
-
£

Freq. bin (index)
P
e
preipe
7 g
W,
{
Label ID
I
)

£ je S | i 0
o
0 Reference points (index)215 0

Input dimension 2160 Input dimension 216

Fig. 4. The images of the smoothed absolute SVs ((a), (b)), and the
smoothed network weight W4 (c). The notation (D, H) represents
the combination of the distance and height [cm].

berant speech signals will be the key technique for localization in
reverberant environment. The optimization of DNNs’ parameters,
such as dimensions of each weight and activator, should also be in-
vestigated. Other matrix decomposition or sound source separation
methods may also be applied instead of EVD.

The robustness for 3) and 4) will require well-designed config-
urations of DNNs. The DNNs used in this paper cannot localize
the unknown direction that did not appear in the training set. We
need to design I) the structure of DNNs, and II) the output labels
and its probability used in the cross-entropy because they must as-
sociate the unknown direction with the known directions included in
the training set. We also need to design the output probability to deal
with multiple source situations in addition to the MCT with several
sound sources. The output label will include not only one source
case but also two source case, such as “0 and 60 degree”. In such
case, DNNs may obtain a directional activator that reacts when there
are two sound sources at specific locations.

5. CONCLUSION

We proposed SSL based on DNNs that works in the frequency do-
main. The key ideas to realize DNNs-based SSL are 1) constructing
a hierarchical network structure that integrated sub-band information
step by step and 2) designing a novel directional activator that could
treat complex numbers. Experiments demonstrated that our method
outperformed the naive DNN-based SSL.

Future work mainly involves improving robustness against the
reverberation and the number of sound sources. Moreover, a suitable
configuration of DNNs for SSL should be researched more because
it seriously affects performance.
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