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ABSTRACT

Although they have been intensively studied and used in many ap-
plications due to their high directivity factor (DF), superdirective
beamformers are sensitive to sensor noise and mismatch between
sensors. This paper studies the problem of superdirective beamform-
ing combined with the joint diagonalization method. We develop a
subspace superdirective beamforming approach, which can achieve
a good compromise between a high DF and white noise amplifica-
tion. Simulations are performed to justify our theoretical analysis
and demonstrate the good properties of this subspace superdirective
beamforming approach.

Index Terms— Microphone arrays, superdirective beamform-
ing, robust beamforming, supergain, white noise gain, directivity
factor, joint diagonalization, subspace.

1. INTRODUCTION

Microphone array beamforming has been widely used to extract sig-
nals of interest and suppress noise and interference in room acous-
tic environments [1–9]. Many beamforming algorithms have been
developed over the last three decades, such as the delay-and-sum
(DS), the filter-and-sum, the superdirective [8–13], and the differen-
tial [8, 14]. In comparison with many other beamformers, the su-
perdirective one can achieve a high directivity factor (DF) and, as
a result, it is efficient in suppressing reverberation and spherically
isotropic (diffuse) noise [8, 9]. Therefore, this beamformer has the
great potential to solve many important acoustic problems in voice
communications and human-machine interfaces. However, superdi-
rective beamformers are found to be very sensitive to sensor self
noise, mismatch between sensors, and other array imperfections. As
a matter of fact, the lack of robustness is a big hurdle that prevents
superdirective beamformers to being widely deployed in practical
systems [8, 9]. Consequently, how to improve the robustness of su-
perdirective beamformers has long been an important yet challeng-
ing problem. In this paper, we develop a subspace superdirective
beamformer based on the joint diagonalization method. By chang-
ing the dimension of the subspace, we can make a good compromise
between a high DF and white noise amplification.

2. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a source signal (plane wave), in the farfield, that prop-
agates in an anechoic acoustic environment at the speed of sound,
i.e., c = 340 m/s, and impinges on a uniform linear sensor array
consisting of M omnidirectional microphones, where the distance
between two successive sensors is equal to δ. The direction of the
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source signal to the array is parameterized by the azimuth angle θ.
In this context, the steering vector is

d (ω, θ) =
[
1 e−jωτ0 cos θ · · · e−j(M−1)ωτ0 cos θ

]T
, (1)

where the superscript T is the transpose operator, j =
√−1 is the

imaginary unit, ω = 2πf is the angular frequency, f > 0 is the tem-
poral frequency, and τ0 = δ/c is the delay between two successive
sensors at the angle θ = 0.

In this work, we consider fixed directional beamformers with
small values of δ, like in superdirective [3], [5] or differential beam-
forming [8], [11], [14], where the main lobe is at the angle θ = 0
(endfire direction) and the desired signal also propagates from θ = 0.
The array output can then be written as

y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= x (ω) + v (ω)

= d (ω, 0)X (ω) + v (ω) , (2)

where

Ym (ω) = e−j(m−1)ωτ0X (ω) + Vm (ω) (3)

is the signal received at the mth (m = 1, 2, . . . ,M ) microphone,
X (ω) is the desired source signal, Vm (ω) is the additive noise at
the mth microphone, x (ω) = d (ω, 0)X (ω), and v (ω) is defined
similarly to y (ω).

Linear beamforming consists of applying a complex weight at
the output of each microphone and then sum all the weighted outputs
together to get an estimate of the source signal [4], [15], i.e.,

Z (ω) =
M∑

m=1

H∗

m (ω)Ym (ω) = h
H (ω)y (ω) , (4)

where Z (ω) is the estimate of the desired signal, X (ω), Hm (ω) is
a complex weighting coefficient, the superscript ∗ denotes complex
conjugation, the superscript H is the conjugate-transpose operator,
and

h (ω) =
[
H1 (ω) H2 (ω) · · · HM (ω)

]T
(5)

is the spatial filter of length M .
The objective of this work is to find a beamformer, h (ω), that is

able to achieve supergains at the endfire direction with a better con-
trol on the white noise gain (WNG). In our context, the distortionless
constraint is desired, i.e.,

h
H (ω)d (ω, 0) = 1. (6)

To simplify the notation, we write d (ω, 0) as d (ω) in the rest of
this paper.
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3. WHITE NOISE GAIN, DIRECTIVITY FACTOR, AND
BEAMPATTERN

The performance of a beamformer is generally evaluated with the
gain in signal-to-noise ratio (SNR). If we take microphone 1 as the
reference, we can define the input SNR with respect to this reference
as

iSNR (ω) =
φX (ω)

φV1
(ω)

, (7)

where φX (ω) = E
[|X (ω)|2] and φV1

(ω) = E
[|V1 (ω)|2

]
are

the variances of X (ω) and V1 (ω), respectively, with E[·] denoting
mathematical expectation. The output SNR is defined as

oSNR [h (ω)] =
E
[∣∣hH (ω)x (ω)

∣∣2]

E
[|hH (ω)v (ω)|2] (8)

= φX (ω)×
∣∣hH (ω)d (ω)

∣∣2
hH (ω)Φv (ω)h (ω)

=
φX (ω)

φV1
(ω)

×
∣∣hH (ω)d (ω)

∣∣2
hH (ω)Γv (ω)h (ω)

,

where Φv (ω) = E
[
v (ω)vH (ω)

]
and Γv (ω) =

Φv (ω)

φV1
(ω)

are

the correlation and pseudo-coherence matrices of v (ω), respective-
ly. The definition of the SNR gain is obtained from the previous
definitions, i.e.,

G [h (ω)] =
oSNR [h (ω)]

iSNR (ω)
=

∣∣hH (ω)d (ω)
∣∣2

hH (ω)Γv (ω)h (ω)
. (9)

We consider two types of noise.

• The temporally and spatially white noise with the same vari-
ance at all microphones1. In this case, Γv (ω) = IM , where
IM is the M ×M identity matrix and the SNR gain is called
the WNG, i.e.,

W [h (ω)] =

∣∣hH (ω)d (ω)
∣∣2

hH (ω)h (ω)
. (10)

It can be shown that the maximum possible WNG is equal to
the number of microphones, i.e., Wmax = M . We will see
how the white noise is amplified with superdirective beam-
formers, especially at low frequencies.

• The diffuse noise2 where

[Γv (ω)]ij = [Γd (ω)]ij =
sin [ω(j − i)τ0]

ω(j − i)τ0

= sinc [ω(j − i)τ0] . (11)

In this scenario, the SNR gain is called the DF:

D [h (ω)] =

∣∣hH (ω)d (ω)
∣∣2

hH (ω)Γd (ω)h (ω)
. (12)

It can be shown that the maximum possible DF is Dmax =
M2 [13], which is referred to as the supergain in the litera-
ture. This gain can be achieved but at the expense of white
noise amplification particularly at low frequencies.

Beampattern, also called directivity pattern, describes the beam-
former’s sensitivity to a planewave impinging on the array from the
direction θ. It is defined as

B [h (ω) , θ] = d
H (ω, θ)h (ω) . (13)

1This noise models the sensor self noise.
2This situation corresponds to the spherically isotropic noise field.

4. CONVENTIONAL SUPERDIRECTIVE BEAMFORMERS

The superdirective beamformer assumes that the noise is diffuse.
Similar to the minimum variance distortionless response (MVDR)
beamformer [6], [7], the superdirective beamformer is obtained by
minimizing the residual noise, i.e., hH (ω)Γd (ω)h (ω) subject to
the distortionless constraint [eq. (6)], i.e.,

min
h(ω)

h
H (ω)Γd (ω)h (ω) subject to h

H (ω)d (ω) = 1. (14)

The solution to this well-known problem is [3]

hS (ω) =
Γ−1

d (ω)d (ω)

dH (ω)Γ−1
d (ω)d (ω)

. (15)

Note that the superdirective beamformer is a fixed beamformer since
it does not need to estimate the statistics of the signals. In fact, it can
be shown that (15) is the hypercardioid of order M − 1 [14].

It is well known that (15) is sensitive to sensor noise and array
imperfections. In order to deal with this important problem, the au-
thors in [3], [5] proposed to maximize the DF subject to a constraint
on the WNG. Using the distortionless constraint, one can find the
optimal solution as [3], [5]

hR,ε (ω) =
[Γd (ω) + εIM ]−1

d (ω)

dH (ω) [Γd (ω) + εIM ]−1
d (ω)

, (16)

where ε ≥ 0 is a Lagrange multiplier. It is clear that (16) is a
regularized (or robust) version of (15), where ε is the regulariza-
tion parameter. This parameter tries to find a good compromise be-
tween the DF and white noise amplification. A small ε leads to a
large DF but a low WNG, while a large ε gives a large WNG but a
low DF. Two interesting cases of (16) are hR,0 (ω) = hS (ω) and
hR,∞ (ω) = hDS (ω) = d (ω) /M , which is the DS beamformer. It
is, in general, very difficult to find an optimal value of this parameter.

5. JOINT DIAGONALIZATION

The joint diagonalization is going to be useful in the derivation of su-
perdirective beamformers that can better compromise between white
noise amplification and supergain. In the rest, it is assumed that we
deal with the spherically isotropic noise, so that Γv (ω) = Γd (ω).

The correlation matrix of x (ω) is Φx (ω) =
φX (ω)d (ω)dH (ω). Therefore, its pseudo-coherence matrix
is

Γx (ω) =
Φx (ω)

φX (ω)
= d (ω)dH (ω) , (17)

which does not depend on X (ω).
The two Hermitian matrices Γx (ω) and Γd (ω) can be jointly

diagonalized as follows [16]:

B
H (ω)Γx (ω)B (ω) = Λ (ω) , (18)

B
H (ω)Γd (ω)B (ω) = IM , (19)

where

B (ω) =
[
b1 (ω) b2 (ω) · · · bM (ω)

]
(20)

is a full-rank square matrix (of size M ×M ),

b1 (ω) =
Γ−1

d (ω)d (ω)√
dH (ω)Γ−1

d (ω)d (ω)
(21)
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is the first eigenvector of the matrix Γ−1
d (ω)Γx (ω),

Λ (ω) = diag [λ1 (ω) , 0, . . . , 0] (22)

is a diagonal matrix (of size M ×M ), and

λ1 (ω) = d
H (ω)Γ−1

d (ω)d (ω) (23)

is the only nonnull eigenvalue of Γ−1
d (ω)Γx (ω), whose corre-

sponding eigenvector is b1 (ω). It is important to observe that nei-
ther B (ω) nor λ1 (ω) depend on the statistics of the signals. It can
be checked from (18) that

b
H
i (ω)d (ω) = 0, i = 2, 3, . . . ,M. (24)

6. SUBSPACE SUPERDIRECTIVE BEAMFORMERS

In this section, we show how to derive subspace superdirective
beamformers thanks to the joint diagonalization technique.

Let us define the matrix of size M ×N :

B1:N (ω) =
[
b1 (ω) b2 (ω) · · · bN (ω)

]
, (25)

with 1 ≤ N ≤ M . We consider beamformers that have the form:

hN (ω) = B1:N (ω)a1:N (ω) , (26)

where

a1:N (ω) =
[
A1 (ω) A2 (ω) · · · AN (ω)

]T �= 0 (27)

is a vector of length N . Substituting (26) into (4), we find that

Z (ω) = a
H
1:N (ω)BH

1:N (ω)d (ω)X (ω)

+ a
H
1:N (ω)BH

1:N (ω)v (ω) (28)

= A∗1 (ω)
√

λ1 (ω)X (ω) + a
H
1:N (ω)BH

1:N (ω)v (ω) .

Since the distortionless constraint is desired, it is clear from the pre-
vious expression that we always choose

A1 (ω) =
1√

λ1 (ω)
. (29)

Now, we need to determine the other elements of a1:N (ω).
With the proposed beamformer, the WNG and the DF are, re-

spectively,

W [hN (ω)] =

∣∣hH
N (ω)d (ω)

∣∣2
hH
N (ω)hN (ω)

(30)

=

∣∣aH
1:N (ω)BH

1:N (ω)d (ω)
∣∣2

aH
1:N (ω)BH

1:N (ω)B1:N (ω)a1:N (ω)

and

D [hN (ω)] =

∣∣hH
N (ω)d (ω)

∣∣2
hH
N (ω)Γd (ω)hN (ω)

(31)

=

∣∣aH
1:N (ω)BH

1:N (ω)d (ω)
∣∣2

aH
1:N (ω)BH

1:N (ω)Γd (ω)B1:N (ω)a1:N (ω)

=

∣∣aH
1:N (ω)BH

1:N (ω)d (ω)
∣∣2

aH
1:N (ω) a1:N (ω)

.

The maximization of the DF or, equivalently, the minimization
of hH

N (ω)Γd (ω)hN (ω) subject to hH
N (ω)d (ω) = 1, leads to the

conventional superdirective beamformer:

hS (ω) =
B1:N (ω)BH

1:N (ω)d (ω)

dH (ω)B1:N (ω)BH
1:N (ω)d (ω)

(32)

=
b1 (ω)b

H
1 (ω)d (ω)

|bH
1 (ω)d (ω)|2

=
Γ−1

d (ω)d (ω)

dH (ω)Γ−1
d (ω)d (ω)

.

The most interesting subspace beamformer is derived by maxi-
mizing the WNG. This is equivalent to minimizing hH

N (ω)hN (ω)
subject to hH

N (ω)d (ω) = 1. We find

hN (ω) =
PB1:N

(ω)d (ω)

dH (ω)PB1:N
(ω)d (ω)

, (33)

where

PB1:N
(ω) = B1:N (ω)

[
B

H
1:N (ω)B1:N (ω)

]
−1

B
H
1:N (ω) . (34)

For N = 1, we get

h1 (ω) =
b1 (ω)

dH (ω)b1 (ω)
= hS (ω) , (35)

which is the conventional superdirective beamformer, and for N =
M , we obtain

hM (ω) =
d (ω)

dH (ω)d (ω)
= hDS (ω) , (36)

which is the DS beamformer. Therefore, by playing with N , we
obtain different beamformers whose performances are in between
the performances of hS (ω) and hDS (ω).

With the proposed beamformer, the WNG is

W [hN (ω)] = d
H (ω)PB1:N

(ω)d (ω) (37)

= λ1 (ω) i
T
[
B

H
1:N (ω)B1:N (ω)

]
−1

i,

where i is the first column of the N ×N identity matrix, IN , with

W [h1 (ω)] =

∣∣bH
1 (ω)d (ω)

∣∣2
bH
1 (ω)b1 (ω)

=
λ1 (ω)

bH
1 (ω)b1 (ω)

≤ M (38)

and

W [hM (ω)] = M. (39)

The DF is

D [hN (ω)] =

[
dH (ω)PB1:N

(ω)d (ω)
]2

dH (ω)PB1:N
(ω)Γd (ω)PB1:N

(ω)d (ω)

= λ1 (ω)

{
iT

[
BH

1:N (ω)B1:N (ω)
]
−1

i
}2

iT [BH
1:N (ω)B1:N (ω)]

−2
i

, (40)

with

D [h1 (ω)] = λ1 (ω) ≤ M2 (41)

and

D [hM (ω)] =

[
dH (ω)d (ω)

]2
dH (ω)Γd (ω)d (ω)

(42)

=
M2

dH (ω)Γd (ω)d (ω)
≥ 1.
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Fig. 1. Beampatterns of the subspace superdirective beamformer
with different values of N at f = 1 kHz. δ = 1 cm andM = 8.

We also deduce an interesting relationship between the WNG
and the DF:

D [hN (ω)]

W [hN (ω)]
=

iT
[
BH

1:N (ω)B1:N (ω)
]
−1

i

iT [BH
1:N (ω)B1:N (ω)]

−2
i
, (43)

where

1

M
≤ D [hN (ω)]

W [hN (ω)]
< ∞. (44)

We should always have

M2 ≥ D [h1 (ω)] ≥ D [h2 (ω)] ≥ · · · ≥ D [hM (ω)] (45)

and

M = W [hM (ω)] ≥ W [hM−1 (ω)] ≥ · · · ≥ W [h1 (ω)] . (46)

Clearly, the beamformer hN (ω) is able to control white noise am-
plification while giving a reasonably good DF.

7. SIMULATIONS

In this section, we briefly study the performance of the subspace su-
perdirective beamformer given in (33) through simulations. We use a
uniform linear microphone array consisting of eight closely spaced
microphones, with δ = 1 cm. The beampatterns, DFs, and WNGs
are plotted in Figs. 1 and 2. When N = 1, we get the conven-
tional superdirective beamformer, which has a high DF but suffers
from significant white noise amplification as seen in Fig. 2. When
N = M , we get the DS beamformer, which gives the maximum
WNG but its DF is low. As seen, the WNG increases with N while
the DF decreases with N . So, a tradeoff between a high DF and
good robustness can be obtained by choosing a proper value of N .
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Fig. 2. SNR gains of the subspace superdirective beamformer: (a)
DF and (b) WNG. δ = 1 cm and M = 8.

8. CONCLUSIONS

In this paper, we studied the problem of robust superdirective beam-
forming by jointly diagonalizing the desired and noise signals corre-
lation matrices. Unlike the regularized superdirective beamformer,
which introduces a constraint on the WNG to improve the robustness
of the beamformer against the microphone sensor noise, we devel-
oped a subspace superdirective beamformer. By properly choosing
the dimension of the subspace, the developed beamformer can find a
good compromise between a high DF and a low WNG. Simulation
results demonstrated the good property of this subspace superdirec-
tive beamformer.

9. RELATION TO PRIOR WORK

Microphone arrays are widely used in many speech communication
applications. The most important component of a microphone ar-
ray system is beamforming, which plays a critical role on the ar-
ray performance in desired signal estimation and noise suppression.
Various beamforming algorithms have been developed over the past
several decades [1–20]. Among those, the superdirective beamform-
ing method has been intensively studied for its ability to achieve a
high DF [8–13]. However, this beamformer is very sensitive to sen-
sor self noise and other array imperfections. How to deal with the
robustness is always the utmost issue in the design of a superdirec-
tive beamformer. Many efforts have been devoted to circumvent this
issue. The most popular approach so far is the so-called regularized
superdirective beamformer [3, 9, 10, 12], in which the WNG is con-
trolled by a regularization parameter. The value of this parameter
has to be carefully chosen. On the one hand, there is not much im-
provement in the WNG if the value is too small and, on the other
hand, the DF of the beamformer may suffer significant degradation
and the beampattern becomes more frequency dependent if the reg-
ularization parameter is too large. In practice, it is not easy to find
the proper value of this parameter that fits to different application
scenarios. In this paper, we developed a subspace superdirective
beamformer based on the joint diagonalization, which provides an
easy way to control the tradeoff between a high DF and robustness
of the beamformer.
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