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ABSTRACT

A sound field decomposition method for a reverberant environment
is proposed. Sound field decomposition is the foundation of various
acoustic signal processing applications and enables the estimation of
the entire sound field from pressure measurements. Although spatial
Fourier analysis of the sound field has been widely used, sparse de-
composition of the sound field has recently been proved to be effec-
tive in several applications. However, in current methods, no con-
straints are imposed on ambiance components, whereas source com-
ponents are assumed to be sparsely distributed in the space. This re-
sults in inaccurate decomposition in a reverberant environment. The
proposed method is based on sparse and low-rank signal models,
which are used for simultaneous decomposition of the observed sig-
nals into source and ambiance components. Numerical simulation
results indicated that the decomposition accuracy is superior to that
of current methods.

Index Terms— Sound field decomposition, sound field analy-
sis, super-resolution, sparse representation, convex optimization

1. INTRODUCTION
Sound field decomposition is a fundamental problem in sound field
analysis, reconstruction, and visualization. The objective of sound
field decomposition is to represent a sound field as a linear combi-
nation of fundamental solutions of the wave equation (or Helmholtz
equation) from pressure measurements. This makes it possible for
the entire sound field to be estimated from the signals received by
multiple microphones. Plane wave decomposition, which corre-
sponds to spatial Fourier analysis of the sound field [1], has been
commonly used because of its computational efficiency. In recent
years, sparse decomposition of the sound field has been proved to be
effective in several applications, such as acoustic holography, source
localization, and sound field recording and reproduction [2–5], ow-
ing to the recent development of sparse decomposition algorithms in
the context of compressed sensing [6, 7].

Acoustic holography is used to measure a pressure or velocity
distribution on a surface close to acoustic sources using a limited
number of pressure measurements [8]. In near-field acoustic holog-
raphy (NAH) [1, 8], the pressure distribution measured by micro-
phones is decomposed into spatial Fourier basis functions, such as
plane wave functions, cylindrical harmonics, and spherical harmon-
ics, to reconstruct the pressure or velocity distribution in the inverse
direction of sound propagation.

Sound field recording and reproduction is targeted at high-
fidelity audio systems. Sound pressures at multiple positions in a
recording area are obtained with microphones and are then repro-
duced with loudspeakers in a target area. This conversion from
the signals received by microphones into the driving signals of

the loudspeakers implicitly includes an estimation of pressure and
velocity distributions; therefore, this problem is closely related to
acoustic holography [9–11]. The wave field reconstruction (WFR)
filtering method, which is based on the spatial Fourier analysis,
enables efficient and stable signal conversion for recording and
reproduction [11, 12].

A critical issue in sound field decomposition based on spatial
Fourier analysis is artifacts originating from spatial aliasing, depend-
ing on the interelement spacing in the microphone array. For exam-
ple, in sound field recording and reproduction, listeners are unable
to clearly localize the reproduced sound images. Furthermore, the
frequency characteristics of the reproduced sound are adversely af-
fected, which is referred to as the coloration effect [13]. We pre-
viously proposed a sparse sound field decomposition method to re-
duce these artifacts [4, 14], in which the sound field is modeled as
the sum of monopole sources inside a predefined source region and
plane waves from outside the region, i.e., source and ambiance com-
ponents. Since only a few monopole components are assumed to
exist inside the source region, it is possible to sparsely decompose
the observed signals into basis functions, or dictionaries, consisting
of Green’s functions. This method makes it possible to improve the
reproduction accuracy above the spatial Nyquist frequency, which
can be regarded as super-resolution in recording and reproduction.

In current methods of sparse sound field decomposition, no con-
straints are imposed on ambiance components, whereas source com-
ponents are assumed to be sparse. For example, in [4, 14], plane
wave components are treated as residuals. This assumption is valid
when the plane wave components include only spatially uncorrelated
signals. However, when there are intense monopole components out-
side the source region, such as reflections, this assumption does not
hold. As a result, the decomposition accuracy can be degraded. Al-
though several methods for sparse sound field decomposition have
been proposed in various contexts [2, 3, 5], the above-mentioned
problem cannot be avoided since the ambiance components are not
explicitly defined or are assumed to be residuals.

We propose a sound field decomposition method based on sparse
and low-rank signal models. In addition to the assumption of a
sparse distribution of monopole components, we assume that sig-
nals derived from plane wave components have a low-rank struc-
ture. This assumption means that the signal components outside the
source region, which are mainly reflections, can be approximated as
the direct product of the source signals and their steering vectors.
Therefore, these signal models can lead to more accurate sound field
decomposition even in a reverberant environment. We derive a de-
composition algorithm based on these signal models by using the
alternating direction method of multipliers (ADMM) [15, 16]. Nu-
merical simulations are conducted to evaluate the proposed method
for sound field decomposition and reconstruction.
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Fig. 1. Generative model of sound field.

2. GENERATIVE MODEL OF SOUND FIELD AND ITS
SPARSE DECOMPOSITION

A generative model of a sound field, which was first proposed in [4],
is briefly revisited. As shown in Fig. 1, a sound field is divided into
two regions, internal and external, of a closed surface. The internal
region is denoted as Ω, i.e., the source region. When a sound pres-
sure of temporal frequency ω at position r is denoted as p(r, ω), the
following equation should be satisfied:

(
∇2 + k2) p(r, ω) = {

−Q(r, ω), r ∈ Ω
0, r /∈ Ω

, (1)

where Q(r, ω) is the distribution of the monopole components in-
side Ω and k = ω/c is the wave number obtained by setting the
sound speed as c. Hereafter, ω is omitted for notational simplicity.
Equation (1) indicates that p(r) satisfies the inhomogeneous and ho-
mogeneous Helmholtz equations at r ∈ Ω and r /∈ Ω, respectively.
Therefore, the solution of (1) can be represented as the sum of the
inhomogeneous and homogeneous terms, pi(r) and ph(r), respec-
tively. The inhomogeneous term pi(r) is represented as a convolu-
tion of Q(r) and the three-dimensional free-field Green’s function
G(r|r′) as [1]

p(r) = pi(r) + ph(r)

=

∫
r′∈Ω

Q(r′)G(r|r′)dr′ + ph(r), (2)

where

G(r|r′) = ejk|r−r′|

4π|r− r′| . (3)

Here, G(r|r′) corresponds to the transfer function between the
monopole source at r′ and the position r. Equation (2) can be
verified by substituting it into (1). Since it is assumed that sound
sources do not exist outside Ω, the homogeneous term ph(r) can be
represented as the sum of plane waves. Our objective is to decom-
pose p(r) into pi(r) and ph(r) from sound pressure measurements
inside Ω. Here, we assume that the sound pressure distribution on
the receiving plane Γ is obtained as shown in Fig. 1.

To address the sound field decomposition problem described
above as a sparse representation problem, the region Ω is discretized
as a set of grid points. Omnidirectional microphones are discretely
aligned on Γ to capture the sound pressure distribution. The numbers
of microphones and grid points are denoted as M and N , respec-
tively. We assume N ≫ M because the grid points should entirely
and densely cover the region Ω. The discrete form of (2) can be
represented as

y = Dx+ z, (4)

where y ∈ CM and x ∈ CN respectively denote the signals re-
ceived by the microphones and the distribution of the monopole
components at the grid points, z ∈ CM is the homogeneous term,
and D ∈ CM×N is the dictionary matrix of the monopole com-
ponents, whose elements consists of Green’s functions between the
grid points and the microphones. Since it can be assumed that only a
few monopole components exist in Ω, a small number of elements of
x have nonzero values. Therefore, when it can be assumed that x is a
dominant component of y and z is a residual, y can be decomposed
into x and z using sparse decomposition algorithms [7].

Although (4) represents the signal model of a single frequency
bin and single time frame, it is possible to exploit several group
sparse signal models arising from the physical properties of the
sound field [14]. For simplicity, we here consider only the group-
sparsity derived from the measurements of multiple time frames,
which is referred to as the multiple-measurement-vector (MMV)
problem [17]. When multiple time frames of y are available and
the monopole components are assumed to be static, each x has the
same sparsity pattern. We denote the index of the time frame as
l ∈ {1, · · · , L} and the signals of each l as yl, xl, and zl. Matrices
Y ∈ CM×L, X ∈ CN×L, and Z ∈ CM×L are defined with each
column consisting of yl, xl, and zl, respectively. Therefore, (4) can
be rewritten as

Y = DX+ Z. (5)

When the monopole components are static at each l, the row of X
becomes sparse. Therefore, this sparse decomposition with respect
to the row can be achieved by solving the following optimization
problem:

minimize
X

∥X∥p/q subject to Y = DX, (6)

where ∥ · ∥p/q is the ℓp/q-norm defined as

∥X∥p/q =

N∑
n=1

∥Xn,·∥pq . (7)

Here, Xn,· represents the nth row of X and 0 ≤ p ≤ 1 and q ≥ 1 are
parameters for inducing the row sparsity of X. Several algorithms
for solving (6) have been proposed [18]. Then, Z can be simply
obtained as Y −DX.

3. SOUND FIELD DECOMPOSITION USING SPARSE AND
LOW-RANK SIGNAL MODELS

In the optimization criterion (6), the homogeneous term Z is not
constrained and is treated as a residual by assuming that it has a
complex Gaussian distribution. This assumption is valid when Z in-
cludes only spatially uncorrelated signals; however, it does not hold
in a reverberant environment. In [14], by setting a large region Ω,
the group sparsity with respect to direct and image source locations
is introduced to overcome this problem. However, it is difficult to
apply this method when the accurate shape and size of the room are
unknown. Therefore, it is necessary to develop a method for sound
field decomposition in a reverberant environment without prior in-
formation about its size and shape.

3.1. Signal model of sparse and low-rank components

In addition to the assumption of the row sparsity of X, we assume
that Z has a low-rank structure. More specifically, the signal compo-
nents outside Ω, which are mainly reflections, can be approximated
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as the direct product of the source signals and their steering vec-
tors. When the source signals are mutually uncorrelated, the rank
of the spatial covariance matrix of Z, i.e., ZZH , can be limited by
the number of sound sources. By introducing this model, it is possi-
ble to accurately decompose X so that the reflective components are
included in Z.

The signal decomposition discussed above can be formulated as
follows:

minimize
X,Z

λ∥X∥1/2 + ∥Z∥∗ subject to Y = DX+ Z, (8)

where ∥·∥∗ represents the nuclear norm, which is the tightest convex
lower bound of the rank function [19]. Additionally, we set p = 1
and q = 2 so that ∥X∥p/q becomes a convex function. The param-
eter λ determines the balance between them. Therefore, (8) can be
solved as a convex optimization problem.

A problem related to (8) is robust principal component analy-
sis [20]. In this problem, X itself is assumed to be sparse and the
constraint condition is Y = X + Z. This model is used to decom-
pose Y into pulsive and low-rank components.

3.2. Decomposition algorithm based on ADMM

We derive an algorithm based on ADMM for solving (8) [15, 16].
First, we define the augmented Lagrangian function Lρ as

Lρ(X,Z,W) = λ∥X∥1/2 + ∥Z∥∗

+⟨W,DX+ Z−Y⟩+ 1

2ρ
∥DX+ Z−Y∥2F , (9)

where ⟨·, ·⟩ represents the inner product, W is the Lagrangian mul-
tiplier, and ρ > 0 is a constant parameter. In ADMM, each variable
is alternately updated, starting with arbitrary initial values, X1, Z1,
and W1, as

Xk+1 = arg min
X

Lρ(X,Zk,Wk)

Zk+1 = arg min
Z

Lρ(X
k+1,Z,Wk)

Wk+1 = Wk +
(
DXk+1 + Zk+1 −Y

)
/ρ

, (10)

where k is the index of the iteration. The Lagrangian function is
minimized for one variable while fixing the other variables. At each
update, X and Z can be efficiently updated by evaluating proximal
operators [21, 22].

The X-update can be formulated as

Xk+1 = arg min
X

λ∥X∥1/2 +
1

2ρ
∥Pk −DX∥2F

= Tλη

(
X− η

ρ
DH(DX−Pk)

)
, (11)

where Pk = Y−Zk − ρWk, η is a stepsize parameter, the (n, l)th
element of the operator Tλρ(·) is defined as

Tα(A)nl = max {∥An,·∥2 − α, 0} Anl

∥An,·∥2
, (12)

and Anl represents the (n, l)th element of A. In a similar manner,
the Z-update can be formulated as

Zk+1 = arg min
Z

∥Z∥∗ +
1

2ρ
∥Qk − Z∥2F

= Ukdiag
(
max{σk

i − ρ, 0}
)(

Vk
)H

, (13)

Fig. 2. Simulation setup.

where Qk = Y −DXk+1 − ρW, diag(·) represents the diagonal
matrix with the arguments as elements, and Uk, Vk, and σk

i are
derived by the singular value decomposition of Qk as

Qk = Ukdiag
(
σk
1 , · · · , σk

r

)(
Vk

)H

. (14)

Here, r is the rank of Qk. Since (11) and (13) respectively amount
to soft thresholding for the matrix element and the singular values,
each iteration can be efficiently computed.

Although the group sparsity of multiple time frames is only as-
sumed in (8), it is straightforward to use other group-sparse signal
models, such as multiple frequency bins [14].

4. EXPERIMENTS
Numerical simulations were conducted to evaluate the proposed
method in a two-dimensional sound field. First, the sparse decom-
position performances of the proposed method and a current method
are compared. Second, we demonstrate super-resolution in sound
field reconstruction using the proposed method.

4.1. Evaluation of sound field decomposition

We compared the proposed method (Proposed) with iterative
shrinkage-thresholding for the MMV problem (M-IST) [23]. M-
IST is an algorithm for solving (6), in which X is iteratively updated
by soft-thresholding as in (11). The sound sources were in a rectan-
gular room of size 3.84×7.0 m2 as shown in Fig. 2. The origin of
the coordinate system was set at the center of the room. A linear mi-
crophone array was set along the x-axis with its center at the origin.
The number of microphones was 32 and they were set at intervals of
0.12 m; therefore, the spatial Nyquist frequency was 1.4 kHz. The
directivity of the microphones was assumed to be omnidirectional.
The room reverberation was simulated by the image method [24].
The reflection coefficients were set as 0.84, which corresponds to a
reverberation time (T60) of about 500 ms.

The size of the two-dimensional region Ω was set to be half of
the room size, i.e., 3.84×3.5 m2 on the x-y plane. The number of
grid points was 38×17. Their intervals were 0.1 m in the x direction
and 0.2 m in the y direction. The center of the grid points was at
(0.0, –1.8) m.

Two point sources were located at (–0.25, –1.0) and (1.25, –
2.2) m. The source signal was a single-frequency sinusoidal wave.
The amplitudes of the source signals were independently generated
by a complex Gaussian distribution with a mean of 0.0 and a variance
of 10.0. Sensor noise was added so that the signal-to-noise ratio was
40 dB.

In Proposed, λ, ρ, and η in (11) and (13) were set as 0.06, 0.4,
and 0.1, respectively. M-IST also requires a parameter correspond-
ing to ρ in (11) to be set, which was set as 3.7×10−2. The number of
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Fig. 3. Results of sound field decomposition. Crosses indicate true
source locations.

time frames of the observed signal was 100. The maximum number
of iterations in both methods was 5000.

To evaluate the performance of sparse decomposition, we de-
fined an F -measure (Fmsr) and a signal-to-distortion ratio (SDR).
An operator supp(·) extracted a set of row indexes such that the
squared amplitude of each row of the solution matrix X was larger
than a threshold value µ,

supp(X) =
{
n ∈ {1, · · · , N} : ∥Xn,·∥22 > µ

}
, (15)

where µ was set as 0.5. Fmsr is defined as

Fmsr = 2
|supp(Xest) ∩ supp(Xtrue)|
|supp(Xest)|+ |supp(Xtrue)|

, (16)

where Xest and Xtrue are the estimated and true solution matrices,
respectively. Therefore, Fmsr is equal to 1 when the sets of activated
indexes of these matrices are exactly the same. SDR is defined as

SDR = 10 log10
∥Xtrue∥2F

∥Xtrue −Xest∥2F
. (17)

Figure 3 shows the amplitude distribution of X when the fre-
quency of the source signal was 2.0 kHz. Note that this frequency
is above the spatial Nyquist frequency. The two crosses indicate the
true source locations. In Proposed, the observed signal was accu-
rately decomposed, although several grid points other than the true
source locations had small amplitudes. In contrast, in M-IST, the
amplitudes of the decomposed signals were dispersed over the grid

-1.5 -1 -0.5 0 0.5 1 1.5
x [m]

-5

0

5

A
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de

Ideal
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M-IST
NAH

Fig. 4. Reconstructed sound pressure distribution on the line y =
−0.5 m. SDRrec for Proposed, M-IST, and NAH was 5.27, 0.66,
and 0.59 dB, respectively.

points. This is because the signal components outside Ω cannot be
treated as residuals. The values of Fmsr for Proposed and M-IST
were 1.0 and 0.09, and the SDR values were 6.8 and 5.5 dB, respec-
tively.

4.2. Evaluation of sound field reconstruction

We applied the proposed method to an acoustic holography problem.
The goal was to reconstruct the sound pressure distribution of direct
sounds on a reconstruction line by using the observed signals. NAH
[1] was also used for comparison in addition to M-IST.

The simulation setup is the same as that in Section 4.1. Two
point sources were located at (–0.25, –1.0) and (1.25, –2.2) m. The
frequency of the source signal was 2.0 kHz. The sound pressure
distribution on the line y = −0.5 m was estimated at 128 points at
intervals of 0.03 m. Here, the SDR for reconstruction, SDRrec, is
defined as

SDRrec = 10 log10

∑
x

∑
t |pideal(x, t)|

2∑
x

∑
t |pideal(x, t)− pest(x, t)|2

, (18)

where pideal(·) and pest(·) are the ideal and estimated sound pressure
distributions on the reconstruction line, respectively.

Figure 4 shows the ideal and estimated distributions of the in-
stantaneous sound pressures. The distribution estimated by NAH in-
cluded significant errors due to spatial aliasing artifacts. In M-IST,
the estimated distribution still contained errors because its signal de-
composition was not accurate. The distribution estimated by Pro-
posed exhibited relatively high accuracy. SDRrec for Proposed, M-
IST, and NAH was 7.44, 5.75, and 1.17 dB, respectively. Therefore,
the accurate decomposition of Proposed enables high reconstruction
accuracy above the spatial Nyquist frequency.

5. CONCLUSION
A sound field decomposition method based on sparse and low-rank
signal models was proposed. In current methods, no constraints are
imposed on the ambiance components, whereas a spatially sparse
distribution of source components is assumed. We assumed that the
ambiance components have a low-rank signal structure. An algo-
rithm for decomposition based on ADMM was derived. In the nu-
merical simulations, the performance of signal decomposition was
first evaluated. Then, the reconstruction accuracy of the sound pres-
sure distribution was compared with that of other methods. The
results indicated that the proposed method enables more accurate
sparse sound field decomposition in a reverberant environment.
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