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ABSTRACT based beamforming for speech enhancement. The system worked
\g/gll with a GMM-HMM based speech recognizer at that time. How-

This paper addresses a minimum variance distortionless respon A ) -
(MVDR) beamforming based speech enhancement approach f ver, we recently realized that the null-steering based beamforming

meeting speech recognition. In a meeting situation, speaker ove :Sl\(leﬂ-mlv?l\jrbmd %rototypﬁ ::annort_gvor:k Wf"n\qN't_F'ha %ats-o{-tge-a;t
laps and noise signals are not negligible. To handle these issu ased speech recognition system. 1his motivated us to

we employ MVDR beamforming, where accurate estimation of the éveAIop mtorte sofptT]'St'C?ted sp?]echhenhancenletnt thec_hnlqut?];.
steering vector is paramount. We recently found that steering vector S a state-ol-the-art speech enhancement technique, this paper

estimation by clustering the time-frequency components of mir:ro-empons a new minimum variance distortionless response (MVDR)

phone observation vectors performs well as regards real-world noi&eamfc_)rming technique, and inve_stigates its performgnce in _mee_ting
reduction. The clustering is performed by taking a cue from the>tenarios. 'For MVDR .beamforr'nmg, accurate a.nd blind estimation
spatial correlation matrix of each speaker, which is realized by mod(-)f th_e steter:mgtvecyors IS etssentlal. V_V'th cl;)nventlontgl MtVBR bearrk1-
eling the time-frequency components of the observation vectors wit rming, the steering vectors are given by an (es_ Imate ) speaker
a complex Gaussian mixture model (CGMM). Experimental result irection and the microphone array geometry, which is not always

with real recordings show that the proposed MVDR scheme Outpelgive_n/accurate especially in a mee_ting situatipn. Moreover, speaker
forms conventional null-beamformer based speech enhancement sitions tend to slowly change during a meeting. We recently found
a meeting situation that steering vector estimation by clustering the time-frequency com-

o ) ] ) ponents of the observation vectors performs well as regards noise
Index Terms— Minimum variance distortionless response reduction of real-world recordings [11,12]. The clustering is per-
(MVDR), speech enhancement, meeting speech recognition, dformed by taking a cue from the spatial correlation matrix of each

arization, complex Gaussian mixture model (CGMM) speaker location [13-15], which is realized by modeling the time-
frequency components of the microphone observation vectors with
1. INTRODUCTION a complex GMM (CGMM). This paper describes the application of

In recent vears. the use of voice-operable smart-hones and tabl our above-mentioned MVDR beamforming scheme to real record-
y ' u Vol p P e'n%s of multi-speaker meeting conversations. The proposed method

has become widespread, and their usefulness has been widely "%%s an ability to estimate steering vectors blindly, without relying on

ognized. When a user speaks carefully into a terminal, that is, a m in (estimated) speaker direction and the microphone array geome-

crophone(s), his/her voice is usually accurately recognized, and tq Full-batch and block-batch modes of the proposed approach wil
device works as expected. On the other hand, there is a growing ne .o be presented

for voice interfaces that can work when a user speaks at a certain dis-" 1, . " o<t of this paper is organized as follows: Section 2 de-

o e vt oS e speec ennancemen 4 n & meling, and S, 3 e
microphones and e’mploy microphones on the table. In such a me lains the proposed approach. Section 4 reports the experimental
. . . . ) ' - tesults, and Sec. 5 concludes the paper.
ing scenario, the interference from acoustic noise and reverberation
is not negligible. Moreover, in an informal relaxed conversation, the
utterances of speakers sometimes overlap. To achieve high speech 2. PROBLEM FORMULATION
recognition accuracy in such a situation, we must take account dfet s (¢, f) be the short time Fourier transform (STFT) coefficient
the reverberation, utterance overlaps, and noise. That is, speech ejf-a speech source of speakgrandhy(f) = [hik,- -, har,n]"
hancement plays an important role for meeting recognition. This pabe its steering vector, whereand f are the time and frequency
per describes a beamforming based speech enhancement approawices, respectively. Then, the observation vegidt, f) =
for meeting recognition. [yi(t, ), ,ym(t, f)]F at M microphones becomes

Meeting recognition has long been studied [1-8], and one major

example of speech enhancement for meetings is Wiener filter based N
single channel noise reduction followed by delay-and-sum beam- y(t, £) =D hi(f)se(t, f) +n(t, f), 1)
forming (e.g., [9]). We have also developed a prototype meeting k=1

recognizer [10] for a small party meeting conversation, where wavheren(t, f) is noise observed at the microphones.
employed a microphone array at the center of the table. In the sys- In this paper, we assume thaf > N. We also assume that
tem, we employed multi-channel dereverberation and null-steerinthe speakers are seated during a meeting, and therefore the steering
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Microphone observations where My (t, f) and M, (¢, f) denote the posterior probability of
speakerk and noise existence in each time-frequency slot, respec-
tively.

In the next subsection, we explain how we can estimate the pos-
terior probabilities for obtaining correlation matricBs. (f) in (4).

CGMM-based
posterior estimation

Steering vector

MVDR estimation 3.1.2. Spatial correlation model based posterior estimation
Steering vector We assume that the soureg(¢, f) and noisen(¢, f) follow a Gaus-
sian distribution of zero mean and a variaheg(t, f)|*> = ¢isx:

Enhanced speech

p(sk(t, £ derr) = N(0, desr). @)
Fig. 1. Algorithm block diagram Then, the observation vector follows a complex Gaussian mixture
model (CGMM) [15]:
vectorhy(f) does not change greatly. The objective of this paper o
is to estimate the speech soufét, f) of each speaket from the Z app(y(t, NICE, f) = k;0) (8)
observationsg/ (¢, f).

3. ALGORITHM
where . is a mixture weight T ap = 1), andByy, =

3.1. Basic scheme he(f )th(f) is the spatial correlation matrix of sourkeC'(t, f) =

Figure 1 shows the fundamental scheme of our algorithm. The malf}‘ivk e L., N) gorresponds tcl) the source classes, @d f) =
part is the MVDR beamformer, where its steering vectors are estil’ T 1 COTfésponds to a noise class.

mated with CGMM-based clustering. The log likelihood function is defined as
The MVDR beamforming coefficients are calculated b,
g Y Zzlogp (t, f);0)
Ryy (f)hi(f)
wi(f) = 2
b (/)Ryy (f)be(f) = ZZIOgZakau(07¢tkafk)»
tf k

whereh,, is the estimated steering vector of speakeand-? de-
notes the conjugate transpose of a vector. By using these coefficientéhered = {0x} = {{d¢sr, By, asi}} is a parameter set.

the enhanced speech estimate is obtained by We can maximize the log likelihood function by using the
Expectation-Maximization (EM) algorithm. Thé function is
k(t, 1) = wi' (Ny (L, f).- (3) givenas
In(2),Ryy(f)is easily calculated with the observation vectors: N+1
Ryy(f) = >, y(t, f)y"(t, f). Onthe other hand, accurate esti- Q = > "> "> " p(C(t, f) = kly(t, f), 0) log asxNe(0, e xByx) (10)
mation of the steering vectdr,, is essential, but it is a challenging tf k=1

problem in a meeting situation.

The following subsections explain the approach for estimatingiereafter, we denote the posterior probability with. (¢, f) =
steering vectors. p(C(t, f) = kly(t, f),8). This posterior probability is required by
the steering vector estimation in Sec. 3.1.1. The posterior for noise
M, (t, f) in Sec. 3.1.1 is given b/ n+1 (¢, f).

The Q function is maximized by iterating the following E- and
We estimate the steering vectbr (f) of each speaket by com-  M-steps, and the posterior is obtained in the E-step.
puting the principal eigenvector of the correlation malRx (/) of E-step: We calculate the posterior:
observations when only speakierspeaks. Assuming the indepen-

3.1.1. Steering vector estimation

dence of speech and noise, and the sparseness of each speaker, i.e., My, f) = p(C(t, f) =kly(t f),0) (11)
only one speaker utterance is dominant at each time-frequency slot, _ asep(y (t, £)]0k) 12
such a correlation matrix can be estimated as T X anp(y(E, £)I0k) 12)
Ri(f) = Ri4n(f) — Ra(f) (4)  M-step: From the@ function, the update rules of the paramei@rs
whereRi+,(f) andR.,,(f) are the correlation matrices of noisy are obtained as:
speech of speakdrand noise, respectively. They can be estimated 1 _
by P pecivel: They oun = ¥ (LB ]) (13)
§MECD g )y, f)
Rin(f) = Z Mt Py (e, Ny" (0. £) 6) Bp = T (1)
LM ) 1Mk(t 1) 4 ! ST Mit, f)
T
1
= = M (t 15
)= S e ( ZM (t. D)y (t. £)y" (t. £)(6) n th: <D )
t=1 t=1
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3.2. Posterior estimation with pre-trained spatial correlation
matrix Speaker 2 Speaker 1

This relates to a natural situation where the seating configuration in a
meeting room is fixed. In such a case, it would be useful to employ a
pre-trained spatial correlation matlﬂ}ﬁf'm‘”‘d for a robust posterior 8 microphones
calculation. The pre-trained matrB}T,fi"e‘i can be calculated by
applying E- and M-steps to a set of training data. Speaker 3
We may fix the spatial correlation matrix (14)Bi]c’}€“i”’e"’ with-
out updating it. As another option, we can also adapt the spatial
correlation matrix to the current meeting data as follows

Fig. 2. Recording room

>, ML Dy fryH (e, f)

Bre=n=—"41 05 —mBFE", (16)
¢ STk Table 1. Recording room conditions and data setups
wheren is an adaptation parameter. - office sound-proof
n p P : Reverberation time 350 msec. 120 msec.
SNR 15-20dB 20-25 dB
3.3. Block batch implementation Evaluation set 8 sessions| 8 sessions

Training set for calculatin@%a"'md 10 sessions| 12 sessions
In the previous section, we implicitly assume that we can use the (subset of training set for ASR)
whole recording of a meeting. That is, we discussed the full batch Training set for ASR 14 sessions 30 sessions
version of our MVDR beamforming, which can be utilized for an ~ Development set for ASR 4 sessions | 4 sessions
off-line mode. On the other hand, block batch or online algorithms
are also useful when real-time processing is required. Here, we dis-
cuss a block batch implementation. 4.1.1. Algorithm setups

In a block batch mode, MVD_R beamformer qoefficients aré Upye first dereverberate the microphone observation vectors [16], and
dated everyF' frames ¢ = 100 in the next section). More con- then employ the proposed MVDR beamforming

cretely, we calculate the correlation matrix (4) and the steering vec- We investigated four setups for the proposed algorithm:

;?;nl;’;(f )E\t/cé r:J ?:?:]ee '\kgll\ci CDkR bt;(:;r]n rfr?cr’g:r Cgfaﬁrfgg:: f(gr) :\s/S;yatin Ex1) Full batch mode: The MVDR coefficients were calculated
: P y using the whole recording of each meeting.

the posterior probability (12) should be calculated at all the time'(ExZ) Block batch MVDR: The spatial correlation matrig ;, was
frequency slots to calculate the correlation matrix (4). Thereforeestimated for each meetiﬁg in full batch mode. on the othfekr hand. the
the parameter updates (12), (13), (14) and (15) in the E- and M'SteRﬁVDR coefficients were updated every 100 fr’ames !
are performed in every time-frequency slot. In this paper we updat?Exs) Block batch with pre-trained spatial correlatibn matrix:

the parameters only once (i.e., one iteration) at each time frame. By using the pre-trained spatial correlation mam"*". whic'h

mat:'ti;sa\':vt(ijgzp c(:egrt:%r(]alnegsttir;r?;tlerétir:]ea'\:-satlei%etrr]r?aﬂ?]aet;él correlatlonwas trained with training data (see Table 1), the MVDR coefficients
) were updated every 100 frames=£ 0 in (16)).

T=1 M(t, f) (Ex4) Block batch with spatial correlation matrix adaptation:
Bi,r — ’ Bfrr-1 The pre-trained spatial correlation mati;**"** was employed
¢ Mi(t, f) + My(T, f) and the spatial correlation matrix was adapted to the meeting record-
qu’ HYE(T, ) ings (7 = 0.1 in (16)). The MVDR coefficients were updated every
ik 100 frames.
T—-1
¢ Me(t, f) + Me(T, f) We compare the proposed method with our conventional beam-
former [10]:
4. EXPERIMENTS W) = B (),
4.1. Experimental setups where thekth row OfW(f) is the beamformer Coeﬁiciemk(f),

i — ym (¢, f)
We conducted experiments to evaluate our proposed approach. the (m, n)th component oH(f) is hmn (f) = B [ v1(t,f) ]te{c(t):k}'

We recorded several sessions of spontaneous Japanese meetindenotes a pseudo inverse, ai(t) = & is estimated by clustering
conversation with an 8-element microphone array at the center ahe direction of arrival estimates. The beamformer coefficients were
the table (see Fig. 2). The recordings were made in two differengéstimated in a block batch mode, i.e., every 100 frames.
rooms: an office and a sound-proof room. The reverberation times
and SNR conditions are summarized in Taple 1. As references, WE1 o ASR evaluation setups
also recorded the meetings with headset microphones.

In the meetings, four participants were seated around a tabM/e evaluate the speech enhancement performance in terms of the
(Fig. 2) and freely discussed a given topic, which was selected frorword error rate (WER) of the evaluation set. For the speech recog-
28 themes. The participants did not change their seats during the sestion, we utilized our DNN-based automatic speech recognition
sion. Each session lasted approximately 15-25 minutes. The recor(ASR) back-end system [17], where we employed 40 log mel fil-
ings are divided into training, development and evaluation sets agrbank coefficients with their delta and acceleration, and 5 left and
shown in Table 1. 5 right context windows as the DNN input. The DNN structure had
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Fig. 3. Example waveforms of (a) office recordings, and processed speech signals with (b) conventional method and (c) proposed meth
(Ex1). (d) shows example normalized posteriors corresponding to (c), which was calcul3t@g bk (¢, f)/Nr in (17).

Table 2. Meeting recognition results (WER [%]) for two window Table 3. Diarization performance (%)
sizes with a half shift. "sound-p.” denotes "sound-proof”, | DER | MST FST MST
. - . - conventional [10]|| 33.9 | 28.7 3.6 1.6
WII:]dOW size= 64 msec, WIndOW size= 32 msec. proposed (EXl) 15.9 11.9 3.2 0.8
office sound-p] ave. |office sound-p] ave. proposed (Ex4) 183 | 15.1 24 0.8

(1) headset mic. | 17.6 246 | 21.3 | 17.6 246 | 21.3
(2) table mic. 926 655 | 79.1 | 926 655 | 79.1
(3) conventional | 67.8 48.6 | 58.2 - - -

(3') conventional | 56.6 58.3 | 57.5

mode (4). Moreover, it can be seen that the use of the pre-trained

(@) proposed (Ex1) 49.9 420 | 46.0 | 459 39.8 | 429 spatial correlation matrix works well ((6) and (7)), and the matrix
(5) proposed (Ex2) 48.6 424 | 455 | 47.3 423 | 448 adaptation (7) improves the recognition performance.

(6) proposed (Ex3) 52.5 441 | 483 | 47.9 405 | 442 Figure 3 shows the example waveforms of (b) conventional and
(7) proposed (Ex4) 52.0  43.9 | 48.0 | 472 404 | 438 (c) proposed beamforming.

By using the estimated posteridfy (¢, f), we can also perform
speaker diarization, that is, we can estimate "who speaks when”.
7 hidden layers (2048 units each) and 4100 output HMM states. Wene way to perform diarization is
trained an acoustic model with headset recordings from the training )
dataset (see Table 1). Note that we did not retrain the DNN with the diag (t) — { 1 if Zf .]\/{k (t, f)/Np > threshold an
enhanced speech. As the voice activity detection for ASR, we used 0 otherwise

manual annotation. hereN » is th ber of f bins. A le of thi
We used a Kneser-Ney smoothed word trigram language mod{"€ré/Vr IS the number of frequency bins. An example of this nor-

[18], which was trained with transcripts of Japanese lecture speedﬂ.alized posterior is s_hown in Fi_g. 3 (.d)' The diarization performaqce
data from the Corpus of Spontaneous Japanese (CSJ) [19] and tWéth threshold = 0.2 is summarized in Table 3, where the diarization

o . : - " : te (DER), missed speaker time (MST), false-alarm speech
training set of the meeting recordings, in addition to the topic-relate''°" '@ .
WWW data. These three text sets were mixed with weights tha me (FST) and speaker error time (SET) [20] were evaluated. We

minimize the perplexity for the meeting development set can see that posterior based diarization outperforms our previous ap-
' proach [10].

4.2. Experimental results and discussion
5. CONCLUSION

Table 2 summarizes the speech recognition results in terms of WER.
In Table 2, (1) and (2) show the WERs of headset and table microfhis paper proposed an MVDR beamforming scheme for multi-
phone observations. With conventional beamforming (3), the WERspeaker meeting conversation. For accurate steering vector esti-
is still poor. We also show conventional beamforming with our oldmation, we utilize a CGMM-based clustering of the observation
GMM-based ASR system [10] as (3’). We can see that the WERvectors. We confirmed that the proposed MVDR approach performs
of (3) is worse than that of (3'), i.e., our conventional beamform-well even in a block batch mode, and outperforms conventional
ing does not perform well with the DNN-based ASR system. Thisnull-beamformer based speech enhancement in a real meeting situ-
motivated us to utilize a new beamforming technique. ation. We also confirmed that we can perform speaker diarization
The results from (4) to (7) show the WERSs with our proposedwith the posterior probability, which is estimated by CGMM-based
beamforming approach. We confirmed that the proposed beamfornetustering. Future work includes the online extension of the pro-
ing technique outperforms conventional beamforming. The blockposed MVDR beamforming, DNN-AM retraining with enhanced
batch approaches (5), (6) and (7) performed quite well: their perspeech for ASR, and an attempt to deal with more dynamic meeting
formance did not become very poor compared with the full-batctsituations.
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