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ABSTRACT

This paper addresses a minimum variance distortionless response
(MVDR) beamforming based speech enhancement approach for
meeting speech recognition. In a meeting situation, speaker over-
laps and noise signals are not negligible. To handle these issues,
we employ MVDR beamforming, where accurate estimation of the
steering vector is paramount. We recently found that steering vector
estimation by clustering the time-frequency components of micro-
phone observation vectors performs well as regards real-world noise
reduction. The clustering is performed by taking a cue from the
spatial correlation matrix of each speaker, which is realized by mod-
eling the time-frequency components of the observation vectors with
a complex Gaussian mixture model (CGMM). Experimental results
with real recordings show that the proposed MVDR scheme outper-
forms conventional null-beamformer based speech enhancement in
a meeting situation.

Index Terms— Minimum variance distortionless response
(MVDR), speech enhancement, meeting speech recognition, di-
arization, complex Gaussian mixture model (CGMM)

1. INTRODUCTION

In recent years, the use of voice-operable smart-phones and tablets
has become widespread, and their usefulness has been widely rec-
ognized. When a user speaks carefully into a terminal, that is, a mi-
crophone(s), his/her voice is usually accurately recognized, and the
device works as expected. On the other hand, there is a growing need
for voice interfaces that can work when a user speaks at a certain dis-
tance from the microphones. One typical scenario is a group conver-
sation in a meeting, where we may want to avoid the use of headset
microphones and employ microphones on the table. In such a meet-
ing scenario, the interference from acoustic noise and reverberation
is not negligible. Moreover, in an informal relaxed conversation, the
utterances of speakers sometimes overlap. To achieve high speech
recognition accuracy in such a situation, we must take account of
the reverberation, utterance overlaps, and noise. That is, speech en-
hancement plays an important role for meeting recognition. This pa-
per describes a beamforming based speech enhancement approach
for meeting recognition.

Meeting recognition has long been studied [1–8], and one major
example of speech enhancement for meetings is Wiener filter based
single channel noise reduction followed by delay-and-sum beam-
forming (e.g., [9]). We have also developed a prototype meeting
recognizer [10] for a small party meeting conversation, where we
employed a microphone array at the center of the table. In the sys-
tem, we employed multi-channel dereverberation and null-steering

based beamforming for speech enhancement. The system worked
well with a GMM-HMM based speech recognizer at that time. How-
ever, we recently realized that the null-steering based beamforming
used in our old prototype cannot work well with a state-of-the-art
DNN-HMM based speech recognition system. This motivated us to
develop more sophisticated speech enhancement techniques.

As a state-of-the-art speech enhancement technique, this paper
employs a new minimum variance distortionless response (MVDR)
beamforming technique, and investigates its performance in meeting
scenarios. For MVDR beamforming, accurate and blind estimation
of the steering vectors is essential. With conventional MVDR beam-
forming, the steering vectors are given by an (estimated) speaker
direction and the microphone array geometry, which is not always
given/accurate especially in a meeting situation. Moreover, speaker
positions tend to slowly change during a meeting. We recently found
that steering vector estimation by clustering the time-frequency com-
ponents of the observation vectors performs well as regards noise
reduction of real-world recordings [11, 12]. The clustering is per-
formed by taking a cue from the spatial correlation matrix of each
speaker location [13–15], which is realized by modeling the time-
frequency components of the microphone observation vectors with
a complex GMM (CGMM). This paper describes the application of
our above-mentioned MVDR beamforming scheme to real record-
ings of multi-speaker meeting conversations. The proposed method
has an ability to estimate steering vectors blindly, without relying on
an (estimated) speaker direction and the microphone array geome-
try. Full-batch and block-batch modes of the proposed approach will
also be presented.

The rest of this paper is organized as follows: Section 2 de-
scribes the speech enhancement task in a meeting, and Sec. 3 ex-
plains the proposed approach. Section 4 reports the experimental
results, and Sec. 5 concludes the paper.

2. PROBLEM FORMULATION

Let sk(t, f) be the short time Fourier transform (STFT) coefficient
of a speech source of speakerk, andhk(f) = [h1,k, · · · , hM,N ]T

be its steering vector, wheret and f are the time and frequency
indices, respectively. Then, the observation vectory(t, f) =
[y1(t, f), · · · , yM (t, f)]T atM microphones becomes

y(t, f) =

N∑
k=1

hk(f)sk(t, f) + n(t, f), (1)

wheren(t, f) is noise observed at the microphones.
In this paper, we assume thatM ≥ N . We also assume that

the speakers are seated during a meeting, and therefore the steering
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vectorhk(f) does not change greatly. The objective of this paper
is to estimate the speech sourceŝk(t, f) of each speakerk from the
observationsy(t, f).

3. ALGORITHM

3.1. Basic scheme

Figure 1 shows the fundamental scheme of our algorithm. The main
part is the MVDR beamformer, where its steering vectors are esti-
mated with CGMM-based clustering.

The MVDR beamforming coefficients are calculated by

wk(f) =
R−1

yy (f)ĥk(f)

ĥH
k (f)R−1

yy (f)ĥk(f)
, (2)

whereĥk is the estimated steering vector of speakerk, and·H de-
notes the conjugate transpose of a vector. By using these coefficients,
the enhanced speech estimate is obtained by

ŝk(t, f) = wH
k (f)y(t, f). (3)

In (2),Ryy(f) is easily calculated with the observation vectors:
Ryy(f) =

∑
t y(t, f)y

H(t, f). On the other hand, accurate esti-
mation of the steering vectorhk is essential, but it is a challenging
problem in a meeting situation.

The following subsections explain the approach for estimating
steering vectors.

3.1.1. Steering vector estimation

We estimate the steering vectorhk(f) of each speakerk by com-
puting the principal eigenvector of the correlation matrixRk(f) of
observations when only speakerk speaks. Assuming the indepen-
dence of speech and noise, and the sparseness of each speaker, i.e.,
only one speaker utterance is dominant at each time-frequency slot,
such a correlation matrix can be estimated as

Rk(f) = Rk+n(f)−Rn(f) (4)

whereRk+n(f) andRn(f) are the correlation matrices of noisy
speech of speakerk and noise, respectively. They can be estimated
by

Rk+n(f) =
1∑T

t=1 Mk(t, f)

T∑
t=1

Mk(t, f)y(t, f)y
H(t, f) (5)

Rn(f) =
1∑T

t=1 Mn(t, f)

T∑
t=1

Mn(t, f)y(t, f)y
H(t, f) (6)

whereMk(t, f) andMn(t, f) denote the posterior probability of
speakerk and noise existence in each time-frequency slot, respec-
tively.

In the next subsection, we explain how we can estimate the pos-
terior probabilities for obtaining correlation matricesRk(f) in (4).

3.1.2. Spatial correlation model based posterior estimation

We assume that the sourcesk(t, f) and noisen(t, f) follow a Gaus-
sian distribution of zero mean and a variance|sk(t, f)|2 = ϕtfk:

p(sk(t, f);ϕtfk) = N (0, ϕtfk). (7)

Then, the observation vector follows a complex Gaussian mixture
model (CGMM) [15]:

p(y(t, f); θ) =

N+1∑
k=1

αfkp(y(t, f)|C(t, f) = k; θ) (8)

p(y(t, f)|C(t, f) = k; θ) = Nc(0, ϕtfkBfk), (9)

whereαfk is a mixture weight (
∑N+1

k αfk = 1), andBfk =

ĥk(f)ĥ
H
k (f) is the spatial correlation matrix of sourcek. C(t, f) =

k(k = 1, · · · , N) corresponds to the source classes, andC(t, f) =
N + 1 corresponds to a noise class.

The log likelihood function is defined as

L(θ) =
∑
t

∑
f

log p(y(t, f); θ)

=
∑
t

∑
f

log
∑
k

αfkNc(0, ϕtfkBfk),

whereθ = {θk} = {{ϕtfk,Bfk, αfk}} is a parameter set.
We can maximize the log likelihood function by using the

Expectation-Maximization (EM) algorithm. TheQ function is
given as

Q =
∑
t

∑
f

N+1∑
k=1

p(C(t, f) = k|y(t, f), θ) logαfkNc(0, ϕtfkBfk) (10)

Hereafter, we denote the posterior probability withMk(t, f) =
p(C(t, f) = k|y(t, f), θ). This posterior probability is required by
the steering vector estimation in Sec. 3.1.1. The posterior for noise
Mn(t, f) in Sec. 3.1.1 is given byMN+1(t, f).

The Q function is maximized by iterating the following E- and
M-steps, and the posterior is obtained in the E-step.
E-step: We calculate the posterior:

Mk(t, f) = p(C(t, f) = k|y(t, f), θ) (11)

=
αfkp(y(t, f)|θk)∑
k αfkp(y(t, f)|θk)

(12)

M-step: From theQ function, the update rules of the parametersθ
are obtained as:

ϕtfk =
1

M
yH(t, f)B−1

fk y(t, f) (13)

Bfk =

∑T
t

Mk(t,f)
ϕtfk

y(t, f)yH(t, f)∑T
t Mk(t, f)

(14)

αfk =
1

T

T∑
t

Mk(t, f) (15)
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3.2. Posterior estimation with pre-trained spatial correlation
matrix

This relates to a natural situation where the seating configuration in a
meeting room is fixed. In such a case, it would be useful to employ a
pre-trained spatial correlation matrixBtrained

fk for a robust posterior
calculation. The pre-trained matrixBtrained

fk can be calculated by
applying E- and M-steps to a set of training data.

We may fix the spatial correlation matrix (14) toBtrained
fk with-

out updating it. As another option, we can also adapt the spatial
correlation matrix to the current meeting data as follows

Bfk = η

∑
t

Mk(t,f)
ϕtfk

y(t, f)yH(t, f)∑
t Mk(t, f)

+ (1− η)Btrained
fk , (16)

whereη is an adaptation parameter.

3.3. Block batch implementation

In the previous section, we implicitly assume that we can use the
whole recording of a meeting. That is, we discussed the full batch
version of our MVDR beamforming, which can be utilized for an
off-line mode. On the other hand, block batch or online algorithms
are also useful when real-time processing is required. Here, we dis-
cuss a block batch implementation.

In a block batch mode, MVDR beamformer coefficients are up-
dated everyF frames (F = 100 in the next section). More con-
cretely, we calculate the correlation matrix (4) and the steering vec-
torshk(f) to update MVDR beamformer coefficients (2) everyF
frames. Even in the block batch mode, parameters for estimating
the posterior probability (12) should be calculated at all the time-
frequency slots to calculate the correlation matrix (4). Therefore,
the parameter updates (12), (13), (14) and (15) in the E- and M-steps
are performed in every time-frequency slot. In this paper we update
the parameters only once (i.e., one iteration) at each time frame.

It is worth mentioning that, in the M-step, the spatial correlation
matrix at timeT can be estimated in an online manner:

Bfk,T =

∑T−1
t Mk(t, f)∑T−1

t Mk(t, f) +Mk(T, f)
Bfk,T−1

+

Mk(T,f)
ϕtfk

y(T, f)yH(T, f)∑T−1
t Mk(t, f) +Mk(T, f)

4. EXPERIMENTS

4.1. Experimental setups

We conducted experiments to evaluate our proposed approach.
We recorded several sessions of spontaneous Japanese meeting

conversation with an 8-element microphone array at the center of
the table (see Fig. 2). The recordings were made in two different
rooms: an office and a sound-proof room. The reverberation times
and SNR conditions are summarized in Table 1. As references, we
also recorded the meetings with headset microphones.

In the meetings, four participants were seated around a table
(Fig. 2) and freely discussed a given topic, which was selected from
28 themes. The participants did not change their seats during the ses-
sion. Each session lasted approximately 15-25 minutes. The record-
ings are divided into training, development and evaluation sets as
shown in Table 1.

7 cm

4 cm

table

Speaker 2 Speaker 1

Speaker 3 Speaker 4

8 microphones
~ 1m

Fig. 2. Recording room

Table 1. Recording room conditions and data setups
office sound-proof

Reverberation time 350 msec. 120 msec.
SNR 15-20 dB 20-25 dB
Evaluation set 8 sessions 8 sessions
Training set for calculatingBtrained

fk 10 sessions 12 sessions
(subset of training set for ASR)
Training set for ASR 14 sessions 30 sessions
Development set for ASR 4 sessions 4 sessions

4.1.1. Algorithm setups

We first dereverberate the microphone observation vectors [16], and
then employ the proposed MVDR beamforming.

We investigated four setups for the proposed algorithm:
(Ex1) Full batch mode: The MVDR coefficients were calculated
by using the whole recording of each meeting.
(Ex2) Block batch MVDR: The spatial correlation matrixBfk was
estimated for each meeting in full batch mode, on the other hand, the
MVDR coefficients were updated every 100 frames.
(Ex3) Block batch with pre-trained spatial correlation matrix:
By using the pre-trained spatial correlation matrixBtrained

fk , which
was trained with training data (see Table 1), the MVDR coefficients
were updated every 100 frames (η = 0 in (16)).
(Ex4) Block batch with spatial correlation matrix adaptation:
The pre-trained spatial correlation matrixBtrained

fk was employed
and the spatial correlation matrix was adapted to the meeting record-
ings (η = 0.1 in (16)). The MVDR coefficients were updated every
100 frames.

We compare the proposed method with our conventional beam-
former [10]:

W(f) = H−(f),

where thekth row of W(f) is the beamformer coefficientwk(f),

the(m,n)th component ofH(f) ishmn(f) = E
[
ym(t,f)
y1(t,f)

]
t∈{C(t)=k}

,

− denotes a pseudo inverse, andC(t) = k is estimated by clustering
the direction of arrival estimates. The beamformer coefficients were
estimated in a block batch mode, i.e., every 100 frames.

4.1.2. ASR evaluation setups

We evaluate the speech enhancement performance in terms of the
word error rate (WER) of the evaluation set. For the speech recog-
nition, we utilized our DNN-based automatic speech recognition
(ASR) back-end system [17], where we employed 40 log mel fil-
terbank coefficients with their delta and acceleration, and 5 left and
5 right context windows as the DNN input. The DNN structure had
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Fig. 3. Example waveforms of (a) office recordings, and processed speech signals with (b) conventional method and (c) proposed method
(Ex1). (d) shows example normalized posteriors corresponding to (c), which was calculated by

∑
f Mk(t, f)/NF in (17).

Table 2. Meeting recognition results (WER [%]) for two window
sizes with a half shift. ”sound-p.” denotes ”sound-proof”,

window size= 64 msec. window size= 32 msec.
office sound-p. ave. office sound-p. ave.

(1) headset mic. 17.6 24.6 21.3 17.6 24.6 21.3
(2) table mic. 92.6 65.5 79.1 92.6 65.5 79.1
(3) conventional 67.8 48.6 58.2 - - -
(3’) conventional 56.6 58.3 57.5 - - -
(4) proposed (Ex1) 49.9 42.0 46.0 45.9 39.8 42.9
(5) proposed (Ex2) 48.6 42.4 45.5 47.3 42.3 44.8
(6) proposed (Ex3) 52.5 44.1 48.3 47.9 40.5 44.2
(7) proposed (Ex4) 52.0 43.9 48.0 47.2 40.4 43.8

7 hidden layers (2048 units each) and 4100 output HMM states. We
trained an acoustic model with headset recordings from the training
dataset (see Table 1). Note that we did not retrain the DNN with the
enhanced speech. As the voice activity detection for ASR, we used
manual annotation.

We used a Kneser-Ney smoothed word trigram language model
[18], which was trained with transcripts of Japanese lecture speech
data from the Corpus of Spontaneous Japanese (CSJ) [19] and the
training set of the meeting recordings, in addition to the topic-related
WWW data. These three text sets were mixed with weights that
minimize the perplexity for the meeting development set.

4.2. Experimental results and discussion

Table 2 summarizes the speech recognition results in terms of WER.
In Table 2, (1) and (2) show the WERs of headset and table micro-
phone observations. With conventional beamforming (3), the WER
is still poor. We also show conventional beamforming with our old
GMM-based ASR system [10] as (3’). We can see that the WER
of (3) is worse than that of (3’), i.e., our conventional beamform-
ing does not perform well with the DNN-based ASR system. This
motivated us to utilize a new beamforming technique.

The results from (4) to (7) show the WERs with our proposed
beamforming approach. We confirmed that the proposed beamform-
ing technique outperforms conventional beamforming. The block
batch approaches (5), (6) and (7) performed quite well: their per-
formance did not become very poor compared with the full-batch

Table 3. Diarization performance (%)
DER MST FST MST

conventional [10] 33.9 28.7 3.6 1.6
proposed (Ex1) 15.9 11.9 3.2 0.8
proposed (Ex4) 18.3 15.1 2.4 0.8

mode (4). Moreover, it can be seen that the use of the pre-trained
spatial correlation matrix works well ((6) and (7)), and the matrix
adaptation (7) improves the recognition performance.

Figure 3 shows the example waveforms of (b) conventional and
(c) proposed beamforming.

By using the estimated posteriorMk(t, f), we can also perform
speaker diarization, that is, we can estimate ”who speaks when”.
One way to perform diarization is

diak(t) =

{
1 if

∑
f Mk(t, f)/NF > threshold

0 otherwise
(17)

whereNF is the number of frequency bins. An example of this nor-
malized posterior is shown in Fig. 3 (d). The diarization performance
with threshold = 0.2 is summarized in Table 3, where the diarization
error rate (DER), missed speaker time (MST), false-alarm speech
time (FST) and speaker error time (SET) [20] were evaluated. We
can see that posterior based diarization outperforms our previous ap-
proach [10].

5. CONCLUSION

This paper proposed an MVDR beamforming scheme for multi-
speaker meeting conversation. For accurate steering vector esti-
mation, we utilize a CGMM-based clustering of the observation
vectors. We confirmed that the proposed MVDR approach performs
well even in a block batch mode, and outperforms conventional
null-beamformer based speech enhancement in a real meeting situ-
ation. We also confirmed that we can perform speaker diarization
with the posterior probability, which is estimated by CGMM-based
clustering. Future work includes the online extension of the pro-
posed MVDR beamforming, DNN-AM retraining with enhanced
speech for ASR, and an attempt to deal with more dynamic meeting
situations.
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