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ABSTRACT

Existing post-filtering techniques for microphone array speech en-

hancement have two common deficiencies. First, they assume that

the noise is either white or diffuse and cannot deal with point inter-

ferers. Second, they estimate the post-filter coefficients using only

two microphones at a time and then perform averaging over all mi-

crophone pairs, yielding a suboptimal solution at best. In this paper,

we present a novel post-filtering algorithm that alleviates the first

limitation by using a more generalized signal model including not

only white and diffuse but also point interferers, and overcomes the

second deficiency by offering a globally optimized least-squares so-

lution over all microphones. It is shown by simulations that the pro-

posed method outperforms the existing algorithms in many different

acoustic scenarios.

Index Terms— Microphone array, post-filter, beamforming,

least-squares

1. INTRODUCTION

Microphone arrays are increasingly being recognized as an effective

tool to combat noise, interference, and reverberation for speech ac-

quisition in adverse acoustic environments. They have been proven

useful in a variety of applications including robust speech recogni-

tion, hands-free voice communication and teleconferencing, hearing

aids, to name just a few. Beamforming is a traditional microphone

array processing technique that provides a form of spatial filtering:

receiving signals coming from a specific direction while attenuat-

ing signals from other directions. While plausible, spatial filtering

is not optimal in the minimum mean square error (MMSE) sense

from a signal reconstruction perspective. The optimal solution is

the so-called multichannel Wiener filter (MCWF), which can be de-

composed into a minimum variance distortionless response (MVDR)

beamformer and a single-channel post-filter [1]. The state-of-the-

art post-filtering algorithms in [2, 3, 4] have demonstrated that they

could significantly improve speech quality after beamforming.

While these methods are in general successful, they have two

common limitations or deficiencies. First, they assume the noise is

either spatially white (incoherent) or diffuse and cannot deal with

point interferers. Second, they estimate post-filter coefficients using

two microphones at a time and then perform averaging over all mi-

crophone pairs, leading to a suboptimal solution due to this heuristic

approach. In this paper, we present a novel post-filtering algorithm

that uses a more generalized signal model consisting of not only dif-

fuse and white noise but also point interfering sources. Moreover

the new algorithm offers a globally optimized least-squares (LS) so-

lution over all microphones. The performance of the proposed ap-

proach is evaluated on real recorded impulse responses for the de-

sired and interfering sources but synthesized diffuse and white noise.

2. SIGNAL MODELS

Suppose that we intend to use a microphone array of M elements to

capture the signal s(t) from a desired point sound source in a noisy

acoustic environment. The output of themth microphone in the time

domain is written as

xm(t) = gs,m ∗ s(t) + ψm(t), m = 1, 2, · · · ,M, (1)

where gs,m denotes the impulse response from the desired source

to the mth microphone, ∗ denotes linear convolution, and ψm(t) is

the unwanted additive noise. Without loss of generality, the additive

noise commonly consists of three different types of sound compo-

nents: namely, coherent noise from a point interfering source v(t)1,

diffuse noise um(t), and white noise wm(t). Then we have

ψm(t) , gv,m ∗ v(t) + um(t) + wm(t), (2)

where gv,m is the impulse response from the point noise source to

the mth microphone. Presumably the desired signal and these noise

components are short-time stationary and mutually uncorrelated.

In the frequency domain, this generalized microphone array sig-

nal model (1) is transformed into

Xm(jω) = Gs,m(jω)S(jω) +Ψ(jω)

= Gs,m(jω)S(jω) +Gv,m(jω)V (jω) +

Um(jω) +Wm(jω), (3)

where j ,
√
−1, ω is the angular frequency, and Xm(jω),

Gs,m(jω), S(jω), Gv,m(jω), V (jω), U(jω), W (jω) are the

discrete-time Fourier transforms (DTFTs) of xm(t), gs,m, s(t),
gv,m, v(t), u(t), and w(t), respectively. Let us put (3) in a vec-

tor/matrix form as follows

x(jω) = S(jω)gs(jω) + V (jω)gv(jω) + u(jω) + w(jω), (4)

where

z(jω) ,
[
Z1(jω) Z2(jω) · · · ZM (jω)

]T
, z ∈ {x, u, w},

gz(jω) ,
[
Gz,1(jω) Gz,2(jω) · · · Gz,M (jω)

]T
, z ∈ {s, v},

(·)T denotes the transpose of a vector or a matrix. The microphone

array spatial covariance matrix is then found as

Rxx(jω) = σ2
s(ω)Pgs

(jω) + Rψψ(jω) (5)

= σ2
s(ω)Pgs

(jω) + σ2
v(ω)Pgv

(jω) + Ruu(jω) + Rww(jω),

1The proposed post filter theoretically can deal with multiple point inter-
fering sources. But for clarity of presentation, only one point interferer is
assumed. The generalization is left to the reader.
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where the assumption of mutually uncorrelated signals has been ex-

ploited,

Rzz(jω) , E
{

z(jω)zH(jω)
}

, z ∈ {x, ψ, u, w},

Pgz
(jω) , gz(jω)g

H
z (jω), z ∈ {s, v},

σ2
z(ω) , E {Z(jω)Z∗(jω)} , z ∈ {s, v},

and E{·}, (·)H , and (·)∗ denote the mathematical expectation, the

Hermitian transpose of a vector or matrix, and the conjugate of a

complex variable, respectively.

A beamformer filters each microphone signal by a finite impulse

response (FIR) filter Hm(jω) (m = 1, 2, · · · ,M ) and sums the

results up to produce a single-channel output

Y (jω) =
M∑

m=1

H∗

m(jω)Xm(jω) = h
H(jω)x(jω), (6)

where

h(jω) ,
[
H1(jω) H2(jω) · · · HM (jω)

]T
.

3. MODELING NOISE COVARIANCE MATRICES

In (5), there are three interference/noise-related components that will

be modeled as follows:

(1) Point Interferer: The covariance matrix Pgv
(jω) due to the

point interfering source v(t) has rank 1. In general, when re-

verberation is present or the source is in the near field of the mi-

crophone array, the complex elements of the impulse response

vector gv may have different magnitudes. But if only the direct

path is taken into account or if the point source is in the far field,

we have

gv(jω) =
[
e−jωτv,1 e−jωτv,2 · · · e−jωτv,M

]T
, (7)

which incorporates only the interferer’s time differences of ar-

rival at the multiple microphones τv,m (m = 1, 2, · · · ,M )

with respect to a common reference point.

(2) Diffuse Noise: A diffuse noise field is considered spherically

or cylindrically isotropic, i.e., it is characterized by uncorre-

lated noise signals of equal power propagating in all directions

simultaneously. Its covariance matrix is given by (e.g., [5])

Ruu(jω) = σ2
u(ω)Γuu(ω), (8)

where the (p, q)th element of Γuu(ω) is

[Γuu(ω)]p,q =







sinc

(
ω · dpq
c

)

, Spherically Isotropic

J0

(
ω · dpq
c

)

, Cylindrically Isotropic

(9)

dpq is the distance between the pth and qth microphones, c is

the speed of sound, and J0(·) is the zero-order Bessel function

of the first kind.

(3) White Noise: The covariance matrix of additive white noise is

simply a weighted identity matrix:

Rww(jω) = σ2
w(ω) · IM×M . (10)

4. MULTICHANNEL WIENER FILTER, MVDR

BEAMFORMING, AND POST-FILTERING

When a microphone array is used to capture a desired wideband

sound signal (e.g., speech and/or music), the intention is to mini-

mize the distance between Y (jω) in (6) and S(jω) for all ω’s. The

MCWF that is optimal in the MMSE sense can be decomposed into

an MVDR beamformer followed by a single-channel Wiener filter

(SCWF) [1]:

hMCWF(jω) =
R−1
ψψ(jω)gs(jω)

gHs (jω)R−1
ψψ(jω)gs(jω)

︸ ︷︷ ︸

, hMVDR(jω)

· σ2
s′(ω)

σ2
s′(ω) + σ2

ψ′(ω)
︸ ︷︷ ︸

, hSCWF(ω)

, (11)

where

σ2
s′(ω) , σ2

s(ω) · h
H
MVDR(jω)Pgs

(jω)hMVDR(jω),

σ2
ψ′(ω) , h

H
MVDR(jω)Rψψ(jω)hMVDR(jω)

are the power of the desired signal and noise at the output of the

MVDR beamformer, respectively. This decomposition leads to a

widely used structure for microphone array speech acquisition: the

SCWF is regarded as a post-filter after the MVDR beamformer.

5. POST-FILTER ESTIMATION

In order to implement the front-end MVDR beamformer and the

SCWF as a post-processor given in (11), we need to estimate the

signal and noise covariance matrices from the calculated covariance

matrix of the microphone signals. The multichannel microphone sig-

nals are first windowed (by a weighted overlap-add analysis window)

in frames and then transformed by an FFT to get x(jω, i), where i is

the frame index. The estimate of the microphone signals’ covariance

matrix is recursively updated by

R̂xx(jω, i) = λR̂xx(jω, i− 1) + (1− λ)x(jω, i)xH(jω, i), (12)

where 0 < λ < 1 is a forgetting factor.

Again let us ignore the reverberation and hence similar to (7) we

have

gs(jω) =
[
e−jωτs,1 e−jωτs,2 · · · e−jωτs,M

]T
, (13)

where τs,m is the desired signal’s time difference of arrival for the

mth microphone with respect to the common reference point.

Suppose that both τs,m and τv,m are known and do not change

over time. So, according to (5) and by using (8) and (10), we have at

the ith time frame

R̂xx(jω, i) = σ2
s(ω, i)Pgs

(jω) + σ2
v(ω, i)Pgv

(jω) +

σ2
u(ω, i)Γuu(ω) + σ2

w(ω, i)IM×M . (14)

This equality allows to define a criterion based on the Frobenius

norm of the difference between the left and the right hand sides

of (14). By minimizing such a criterion, an LS estimator for
{
σ2
s(ω, i), σ

2
v(ω, i), σ

2
u(ω, i), σ

2
w(ω, i)

}
can be deduced. Note that

the matrices in (14) are Hermitian. We may not want to include re-

dundant information in this formulation.

For an M ×M Hermitian matrix A = [apq], we can define two

vectors: one consists of its diagonal elements and the other is the

off-diagonal half vectorization (odhv) of its lower triangular part

diag{A} ,
[
a11 a22 · · · aMM

]T
, (15)

odhv{A} ,
[
a21 · · ·aM1 a32 · · ·aM2 · · · aM(M−1)

]T
. (16)
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For a plurality of (say N ) Hermitian matrices of the same size, we

define

diag{A1, · · · ,AN} ,
[

diag{A1} · · · diag{AN}
]
, (17)

odhv{A1, · · · ,AN} ,
[

odhv{A1} · · · odhv{AN}
]
. (18)

By using these notations, we re-organize (14) to get

φ̂xx(i) = Θχ(i), (19)

where we have omitted the parameter jω for clarity of presentation,

and

φ̂xx(i) ,

[
diag{R̂xx(jω, i)}
odhv{R̂xx(jω, i)}

]

, Θ ,

[
D(jω)
C(jω)

]

,

D(jω) , diag {Pgs
(jω),Pgv

(jω),Γuu(jω), IM×M} ,
C(jω) , odhv {Pgs

(jω),Pgv
(jω),Γuu(jω), IM×M} ,

χ(i) ,
[
σ2
s(ω, i) σ

2
v(ω, i) σ

2
u(ω, i) σ

2
w(ω, i)

]T
.

Here we have M(M + 1)/2 equations and 4 unknowns. If M ≥ 3,

this is an overdetermined problem.

The aforementioned error criterion is written as

J ,

∥
∥
∥φ̂xx(i)−Θχ(i)

∥
∥
∥

2

. (20)

Minimizing this criterion leads to

χ̂LS(i) = ℜ
{(

Θ
H
Θ

)
−1

Θ
H
φ̂xx(i)

}

, (21)

ℜ{·} denotes the real part of a complex number/vector. Presumably

the estimation errors in φ̂xx(i) are IID random variables. So the LS

solution given in (21) is optimal in the MMSE sense. Substituting

this estimate into (11) leads to what we refer to as an LS post-filter

(LSPF).

So far the deduced LS solution has required thatM ≥ 3. This is

due to the use of a more generalized acoustic-field model that con-

sists of four types of sound signals. But if a better knowledge about

the acoustic field is available such that some types of interfering sig-

nals can be ignored (e.g., no point interferer and/or merely white

noise), then those columns in (19) that correspond to these ignorable

sound sources can be removed and an LSPF can still be developed

even with M = 2.

Now let us briefly review how existing post-filtering techniques

solve this problem and explain why they are not optimal.

(a) Zelinski’s Post-Filter [2] (ZPF) assumes:

1) no point interferer, i.e., σ2
v(ω) = 0,

2) no diffuse noise, i.e., σ2
u(ω) = 0, but

3) only additive incoherent white noise.

So (19) is simplified as follows

[
diag{R̂xx(i)}
odhv{R̂xx(i)}

]

=

[
diag{Pgs

} 1M×1

odhv{Pgs
} 0

] [
σ2
s(i)

σ2
w(i)

]

. (22)

Instead of calculating the optimal LS solution for σ2
s(i) using

(21), the ZPF used only the bottom odhv-part of (22) to get

σ̂2
s,ZPF(i) =

∑M(M−1)/2
p=1 ℜ

{

odhv{R̂xx(i)}
}

p
∑M(M−1)/2
p=1 ℜ{odhv{Pgs

}}
p

. (23)

Note from (13) that ℜ{odhv{Pgs
}}
p
= 1. So (23) becomes

σ̂2
s,ZPF(i) =

∑M(M−1)/2
p=1 ℜ

{

odhv{R̂xx(i)}
}

p

M(M − 1)/2
. (24)

If we use the same acoustic model for the LSPF as what the

ZPF uses (i.e., only white noise), it can be shown that the ZPF

and the LSPF are equivalent when M = 2, but fundamentally

different when M ≥ 3.

(b) McCowan’s Post-Filter [3] (MPF) assumes:

1) no point interferer, i.e., σ2
v(ω) = 0,

2) no additive white noise, i.e., σ2
w(ω) = 0, but

3) only diffuse noise.

Under these assumptions, (19) becomes

[
diag{R̂xx(i)}
odhv{R̂xx(i)}

]

=

[
diag{Pgs

} diag{Γuu}
odhv{Pgs

}odhv{Γuu}

] [
σ2
s(i)
σ2
u(i)

]

. (25)

Note from (9) that diag{Γuu} = 1M×1.

Eq. (25) is an overdetermined system. Again, instead of finding

a global LS solution by following (21), the MPF takes three

equations from (25) that correspond to the pair of the pth and

qth microphones to form a subsystem like the following





σ̂2
xpxp

σ̂2
xqxq

φ̂xpxq



 =





1 1
1 1
1 Γpq





[
σ2
s

σ2
u

]

, (26)

where we have denoted

φ̂xpxq , ℜ
{

R̂xx

}

p,q
, Γpq , ℜ{Γuu}p,q .

The MPF algorithm solves (26) for σ2
s in a particular way as

follows

{σ̂2
s,MPF}p,q =

(σ̂2
xpxp + σ̂2

xqxq )/2− φ̂xpxq
1− Γpq

. (27)

Since there are M(M − 1)/2 different microphone pairs, the

final MPF estimate is simply the average of all subsystems’ re-

sults

σ̂2
s,MPF =

∑M−1
p=1

∑M
q=p+1{σ̂2

s,MPF}p,q
M(M − 1)/2

. (28)

The diffuse noise model is arguably more common in practice

than the white noise model. The later can be regarded as a

special case of the former when Γuu = IM×M . But the MPF’s

approach to solving (25) is heuristic and is unfortunately not

optimal. Again, it can be shown that if the LSPF also uses

a diffuse-noise-only model, it is equivalent to the MPF when

M = 2, but fundamentally different when M ≥ 3.

(c) Leukimmiatis’s Post-Filter [4] follows the algorithm pro-

posed in the MPF to estimate σ2
s(i). Leukimmiatis et al.

simply fixed the bug in the Zelinski’s and McCowan’s post-

filters that the denominator of the post-filter in (11) should be

σ2
s′(ω) + σ2

ψ′(ω) rather than σ2
s(ω) + σ2

ψ(ω).
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6. EXPERIMENTAL RESULTS

This section details the speech enhancement experiments performed

to validate the proposed LSPF technique. These experiments use the

real measured multichannel impulse response database jointly devel-

oped by the Institute of Communication Systems and Data Process-

ing (IND), RWTH Aachen University, Germany and the Acoustic

Lab at Bar-Ilan University (BIU), Israel [6]. A detailed description

of how the database was designed and built can be found in [7].

Presented here is a set of experiments that consider the first 4 micro-

phones of their array whose spacing is 3 cm. The 60 dB reverbera-

tion time is 360ms. The desired source is at the broadside (0◦) of

the array while the interfering source is at the 45◦ direction. Both

are 2m from the array. Clean, continuous, 16 kHz/16-bit speech sig-

nals are used for these point sound sources. The former is a female

speaker and the latter is a male speaker. The voiced parts of the two

signals have many overlaps. Accordingly, the impulse responses are

resampled at 16 kHz and are truncated to 4096 samples. Spherically

isotropic diffuse noise is generated using the method similar to what

was presented in [8]. In our simulations, 72 × 36 = 2592 point

sources distributed on a large sphere are used. All the signals are

truncated to 20 s.

In this study, we have defined three full-band measures to

characterize a sound field (subscript SF): namely, the signal-to-

interference ratio (SIR), signal-to-noise ratio (SNR), and diffuse-to-

white-noise ratio (DWR), as follows

SIRSF , 10 · log10{σ2
s/σ

2
v}, (29)

SNRSF , 10 · log10{σ2
s/(σ

2
u + σ2

w)}, (30)

DWRSF , 10 · log10{σ2
u/σ

2
w}, (31)

where σ2
z , E{z2(t)} and z ∈ {s, v, u, w}.

For performance evaluation, we focus on two objective metrics:

the signal-to-interference-and-noise ratio (SINR) and the perceptual

evaluation speech quality (PESQ) [9]. We compute the SINR’s and

PESQ’s at each microphone and then take their averages as the input

SINR and PESQ, respectively. The output SINR and PESQ (denoted

by SINRo and PESQo, respectively) are similarly estimated. The dif-

ference between the input and output measures (i.e., the delta values)

are of particular interest to be examined. To better see the amount of

noise reduction and speech distortion at the output, we also calculate

the interference and noise reduction (INR) and the desired-speech-

only PESQ (dPESQ). For dPESQ’s, we pass the processed desired

speech and clean speech to the PESQ estimator. The output PESQ

indicates the quality of the enhanced signal while the dPESQ value

quantifies the amount of speech distortion introduced. The Hu &

Loizou’s Matlab codes for PESQ [10] are used in this study.

In order to avoid the well-known signal cancellation problem in

the MVDR beamformer due to room reverberation, we choose to

use the delay-and-sum (D&S) beamformer for front-end processing

and compare four different post-filtering algorithms: namely, none,

ZPF, MPF, and LSPF. The D&S-only implementation is just used

as a benchmark here. For ZPF and MPF, Leukimmiatis’s correction

has been employed. Tests are conducted under the following three

different setups:

1) White Noise ONLY: SIRSF = 30 dB, SNRSF = 5 dB, DWRSF =

−30 dB.

2) Diffuse Noise ONLY: SIRSF = 30 dB, SNRSF = 10 dB, DWRSF =

30 dB.

3) Mixed Noise/Interferer: SIRSF = 0 dB, SNRSF = 10 dB, DWRSF

= 0 dB.

Table 1: Microphone array speech enhancement results.

Method INR SINRo / PESQo / dPESQo /

(dB) △SINR (dB) △PESQ △dPESQ

White Noise Only

D&S Only 5.978 14.201/ +5.667 1.795/+0.363 2.286/-0.019

D&S+ZPF 11.893 17.827/ +9.293 2.055/+0.623 2.351/+0.046

D&S+MPF 16.924 17.161/ +8.627 2.115/+0.683 2.130/-0.175

D&S+LSPF 13.858 21.460/+12.925 2.180/+0.748 2.299/-0.006

Diffuse Noise Only

D&S Only 3.735 16.915/ +3.423 1.852/+0.088 2.286/-0.019

D&S+ZPF 7.467 18.594/ +5.102 1.954/+0.190 2.311/+0.006

D&S+MPF 10.012 16.545/ +3.053 2.122/+0.358 2.427/+0.121

D&S+LSPF 12.236 17.699/ +4.207 2.254/+0.490 2.516/+0.211

Mixed Noise/Interferer

D&S Only 0.782 2.398/ +0.435 1.493/+0.122 2.286/-0.019

D&S+ZPF 2.879 2.424/ +0.461 1.563/+0.193 2.314/+0.009

D&S+MPF 9.470 4.211/ +2.248 1.791/+0.420 2.297/-0.008

D&S+LSPF 16.374 9.773/ +7.810 1.940/+0.569 2.336/+0.031

In these tests, the square-root Hamming window and 512-point FFT

are used for the STFT analysis. Two neighboring windows have

50% overlapped samples. The weighted overlap-add method is used

to reconstruct the processed signal.

The experimental results are summarized in Table 1. Let us first

look at the results for the white-noise-only sound field. Since this is

the type of sound field addressed by the ZPF method, the ZPF does

a reasonably good job in suppressing noise and enhancing speech

quality. But the proposed LSPF achieves more noise reduction and

offers higher output PESQ although meanwhile it introduces more

speech distortion with a slightly lower dPESQ. The MPF produces

a deceptively high INR since its SINR gain is lower than that of the

ZPF and LSPF. This means that the MPF significantly suppresses not

only noise but also speech signals. Besides, its PESQ and dPESQ are

all lower than that of the LSPF.

In the second sound field, it is as expected that the D&S beam-

former is less effective to deal with diffuse noise and the ZPF’s per-

formance degrades too. In this case the MPF’s performance is rea-

sonally good while still the LSPF yields evidently best results.

The third sound field is apparently the most challenging case

to tackle due to the presence of a time-varying interfering speech

source. The LSPF outperforms the other methods in all metrics.

Finally, it is noteworthy that these purely objective performance

evaluation results are consistent with subjective perception of the

four techniques in informal listening tests carried out with a small

number of our colleagues.

7. CONCLUSIONS

In this paper, we have presented a novel LS post-filtering algorithm

for microphone array applications. Unlike the existing post-filtering

techniques, the proposed method can deal with not only diffuse and

white noise but also point interferers. Moreover it is a globally opti-

mal solution that exploits the information collected by a microphone

array more efficiently. The advantage of the proposed technique over

existing methods was validated and quantified by simulations in var-

ious acoustic scenarios.
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