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ABSTRACT

In this paper, we propose a Direction of Arrival (DoA) estimator for
a Hearing Aid System (HAS) which can connect to a wireless micro-
phone worn by a target talker. The wireless microphone “informs”
the HAS about the almost noise-free content of the target sound,
and the proposed DoA estimator uses the knowledge of the noise-
free target sound and the received microphone signals to estimate the
DoA via a maximum likelihood approach. Moreover, the proposed
DoA estimator resorts to a user-independent spherical-head model to
consider the acoustic impacts of the head on the received signals at
the HAS. Further, the proposed DoA estimator uses an Inverse Dis-
crete Fourier Transform (IDFT) technique to evaluate the likelihood
function computationally efficiently. We assessed the performance
of the proposed estimator for various DoAs, Signal to Noise Ratios
(SNRs), and target distances in different noisy and reverberant situ-
ations. The proposed estimator improves the performance markedly
over other recently proposed “informed” DoA estimators.

Index Terms— Sound source localization, Direction of Arrival,
Maximum Likelihood, Hearing Aid Systems

1. INTRODUCTION

Direction of Arrival (DoA) estimation of a target sound has been
investigated with different approaches in various applications, such
as robotics [1–3], video conferencing [4], surveillance [5], wireless
acoustic sensor network [6], and hearing aids [7–10]. In this paper,
we propose a DoA estimator for an advanced Hearing Aid System
(HAS) which can connect to a wireless microphone worn by a target
talker. Recognizing the target sound DoA allows HASs to enhance
the spatial hearing of the HAS user by maintaining or accentuating
the spatial cues of the target sound [10–12].

Most DoA estimation algorithms have been proposed for appli-
cations which are “uninformed” about the noise-free content of the
target sound, e.g. [1–7, 12–15]. However, advances in wireless tech-
nology enable new HASs—where the target talker is wearing a wire-
less microphone—to have access to an essentially noise-free version
of the target signal [8–11]. This change introduces the “informed”
DoA estimation problem considered in this paper (Fig. 1).

The “informed” DoA estimation problem was first studied and
tackled via a binaural Time-Difference-of-Arrival (TDoA)-based
method in [10]. This method estimates the TDoA by resorting to
a cross-correlation technique and then maps the estimated TDoA
to a DoA estimate through a sine law. This method [10] has a
low computational overhead and confines the target locations to the
front-horizontal plane.

In previous papers [8,9], we also dealt with the “informed” DoA
estimation problem. Specifically, we proposed a maximum likeli-
hood (ML) framework that utilizes the wirelessly transmitted signal
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Fig. 1: An “informed” DoA estimation scenario for a hearing aid
system using a wireless microphone. rm(n), s(n) and hm(n, θ)
are the noisy received sound at microphone m, the noise-free target
sound and the acoustic channel impulse response between the tar-
get talker and microphone m, respectively. s(n) is available at the
hearing aid via wireless connection, and the goal is to estimate θ.

and ambient noise characteristics for DoA estimation. The algo-
rithm proposed in [8]—called MLSSL (Maximum Likelihood Sound
Source Localization)—uses a database of measured Head Related
Transfer functions (HRTFs) of the specific HAS user in order to
model the user’s head shadowing effect and the acoustic channel. On
the other hand, the estimator proposed in [9], which is a TDoA-based
DoA estimator, employs a free-field and far-field model to avoid
user-related prior assumptions. The signal model in [9] enabled the
use of Inverse Discrete Fourier Transform (IDFT) techniques to eval-
uate the likelihood function computationally efficiently.

MLSSL [8] and the TDoA-based method [9] form a family of
ML-based methods for solving the “informed” DoA estimation prob-
lem. These two methods are the two extremes in this family regard-
ing modeling of and dependence on the acoustic characteristics of
the specific user’s head: MLSSL [8] relies on detailed knowledge
of the head characteristics of a specific user, while the TDoA-based
method [9] totally ignores the acoustic shadowing effect of the head.
In general, MLSSL is more accurate than the TDoA-based method
at the cost of higher computation and prior knowledge of HRTFs.

In this paper, we propose an intermediate approach to gain ad-
vantages of both methods. To improve the accuracy over the TDoA-
based method, we propose a simplified spherical-head model which
allows to consider the acoustic effects of the head without being
user-dependent. Further, we show that the likelihood function in
the proposed method can be computed efficiently using IDFTs. The
proposed method is different from [10] because it uses a maximum
likelihood approach, which considers the background noise charac-
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teristics, models the presence of the head, and estimates the DoA
and the TDoA jointly.

2. SIGNAL MODEL

Regarding Fig. 1, for microphone m of the HAS, we can write:

rm(n) = s(n) ∗ hm(n, θ) + vm(n), m ∈ {left, right} , (1)

where rm, s, hm and vm are the noisy signal received at microphone
m, the noise-free target signal emitted at the target talker’s position,
the acoustic channel impulse response between the target talker and
microphone m, and an additive noise component, respectively. n is
the discrete time index, and ∗ is the convolution operator.

LetRm(l, k), S(l, k) and Vm(l, k) denote the short time Fourier
transform (STFT) of rm, s and vm, respectively. Specifically, let

Rm(l, k) =
∑
n

rm(n)w(n− lA)e−
j2πk
N

(n−lA), (2)

where l and k are frame and frequency bin indexes, respectively,N is
the frame length, A is the decimation factor, w(n) is the windowing
function, and j =

√
−1 is the imaginary unit. We define S(l, k)

and Vm(l, k) similarly. Moreover, let Hm(k, θ) denote the Discrete
Fourier Transform (DFT) of hm:

Hm(k, θ) =
∑
n

hm(n, θ)e−
j2πkn
N (3)

= αm(k, θ)e−
j2πk
N

Dm(k,θ), (4)

where N is the DFT order, αm(k, θ) is a real number and denotes
the frequency-dependent attenuation factor due to propagation ef-
fects, and Dm(k, θ) is the frequency-dependent propagation time
from the target sound source to microphone m. For simplicity and
to decrease computation overhead, we model the acoustic channel
as a function that delays and attenuates its input signals uniformly
across frequencies [9], i.e.

H̃m(k, θ) = α̃m(θ)e−
j2πk
N

D̃m(θ), (5)

where D̃m(θ) and α̃m(θ) are frequency-independent. Now, we can
approximate Eq.(1) in the STFT domain as:

Rm(l, k) = S(l, k)H̃m(k, θ) + Vm(l, k). (6)

The vector form of Eq. (6) is written as:

R(l, k) = S(l, k)H̃(k, θ) + V (l, k), (7)
where

R(l, k) = [ Rleft(l, k), Rright(l, k) ]ᵀ,

H̃(k, θ) = [ H̃left(k, θ), H̃right(k, θ) ]ᵀ,

V (l, k) = [ Vleft(l, k), Vright(l, k) ]ᵀ,

and the superscript ᵀ is the transpose operator.

3. MAXIMUM LIKELIHOOD FRAMEWORK

To define the likelihood function, we assume the additive noise ob-
served at the microphones is distributed according to a zero-mean
circularly-symmetric complex Gaussian distribution, i.e. V (l, k) ∼
N (0,Cv(l, k)), where Cv(l, k) = E{V (l, k)V H(l, k)}, and
where E{.} and superscript H represent the expectation and Her-
mitian transpose operators, respectively. Since S(l, k) is available

at the HAS, we can relatively easily determine the time-frequency
regions in the received noisy microphone signals, where the tar-
get speech is essentially absent; therefore, we adaptively estimate
Cv(l, k) using exponential smoothing over these time-frequency re-
gions. Moreover, we assume the noisy observations are independent
across frequencies; therefore, the likelihood function for each frame
is defined by:

p(R(l)|S(l), H̃(θ),Cv(l)) =

N∏
k=1

1

πM |Cv(l, k)|e
{−(Z(l,k))HC−1

v (l,k)(Z(l,k))}, (8)

where |.| denotes the matrix determinant, N is the number of fre-
quency indexes and

R(l) = [ R(l, 1), R(l, 2), · · · , R(l, N) ],

R(l, k) = [ Rleft(l, k), Rright(l, k) ]ᵀ, 1 ≤ k ≤ N,
S(l) = [ S(l, 1), S(l, 2), · · · , S(l, N) ]ᵀ,

H̃(θ) = [ H̃(1, θ), H̃(2, θ), · · · , H̃(N, θ) ],

H̃(k, θ) = [ H̃left(k, θ), H̃right(k, θ) ]ᵀ

=

[
α̃left(θ)e

−j2π k
N
D̃left(θ)

α̃right(θ)e
−j2π k

N
D̃right(θ)

]
, 1 ≤ k ≤ N,

Cv(l) = [ Cv(l, 1), Cv(l, 2), · · · , Cv(l, N) ]ᵀ,

Z(l, k) = R(l, k)− S(l, k)H̃(k).

The corresponding reduced log-likelihood function, with terms in-
dependent of θ omitted, is given by:

L̃ =

N∑
k=1

{−(Z(l, k))HC−1
v (l, k)(Z(l, k))}. (9)

4. DOA ESTIMATION USING A HEAD MODEL

In this section, we aim to find the MLE of θ. The first step is to
describe the acoustic model of the head.

4.1. Spherical-head model

To describe the acoustic characteristics of a head, we use the “Inter-
Microphone Time Difference” (IMTD) and the “Inter-Microphone
Level Difference” (IMLD), which are defined as follows:

IMTD : ∆T (θ) = D̃left(θ)− D̃right(θ), (10)

IMLD : ∆L(θ) = 20 log10

(
α̃left(θ)

α̃right(θ)

)
, (11)

where D̃m and α̃m are defined in Eq. (5).
In general, IMTD and IMLD are frequency-dependent; however,

to compute the likelihood function computationally efficiently us-
ing IDFTs, we assume they are frequency-independent. Despite this
crude assumption, we show in our simulation experiments that this
leads to performance improvements. For a rigid spherical head, the
IMTD can be approximated by [16]:

IMTD : D̃left(θ)− D̃right(θ) =
b

c
(sin(θ) + θ) , (12)

where b is the sphere radius and c is the speed of sound. To model the
IMLD, we use the following relation inspired by the work in [15]:

IMLD : 20 log10

(
α̃left(θ)

α̃right(θ)

)
= γ sin(θ). (13)
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Fig. 2: Scaling factor γ of IMLD (Eq. (13)) for a spherical head
using theoretical HRTFs [17].

In [15], γ is a frequency-dependent scaling factor, which is gener-
ally smaller at lower frequencies and larger at higher frequencies;
however, to be able to apply IDFTs, we assume γ to be frequency-
independent. We describe how to determine this value in sec. 4.3.

4.2. DoA estimator

To find the MLE of θ, we expand Eq. (9). Let us denote

C−1
v (l, k) ≡

[
C11(l, k) C12(l, k)
C21(l, k) C22(l, k)

]
. (14)

From Eqs. (12) and (13), D̃right and α̃right can be expressed in terms
of D̃left and α̃left, respectively. Inserting these expressions in Eq. (9),
we arrive at L̃(θ, D̃left, α̃left) which is independent of D̃right and α̃right.
To eliminate the dependency on α̃left, we insert the MLE of α̃left in
L̃. It can be shown that the MLE of α̃left is:

α̂left =
f(θ,Dleft)

g(θ)
, (15)

where

f(θ,Dleft) =

N∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) + 10
γ sin(θ)

20

(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)
ej2π

k
N

[− b
c

(sin(θ)+θ)]

)
×

S∗(l, k)ej2π
k
N
Dleft(θ), (16)

g(θ) =

N∑
k=1

(
C11(l, k) +

2× 10
γ sin(θ)

20 C21e
j2π k

N
[− b
c

(sin(θ)+θ)] +

10
γ sin(θ)

10 C22(l, k)
)
|S(l, k)|2, (17)

where [.] rounds to nearest integer. Inserting α̂left into L̃ gives us:

L̃(θ,Dleft) =
f2(θ,Dleft)

g(θ)
. (18)

Note that f(θ,Dleft) in Eq. (16) has a structure of an IDFT, which can
be evaluated computationally efficiently, with respect to Dleft; there-
fore, for a given θ, computing L̃(θ,Dleft) results in a discrete-time
sequence, where the MLE of Dleft is the time index of the maximum
of the sequence. Since θ is unknown, we consider a discrete set Θ of
different θs, and evaluate L̃(θ,Dleft) using an IDFT for each θ ∈ Θ.
The MLEs of Dleft and θ are then given by the global maximum:

[θ̂, D̂left] = arg maxθ∈Θ,Dleft
L̃(θ,Dleft). (19)
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Fig. 3: The map of the room used for HRIRs measurements.

4.3. Scaling factor γ

The only remaining issue is the value of γ, which should be inserted
in Eqs. (16) and (17) to evaluate Eq. (18). As shown in Fig. 2, ide-
ally, the scaling factor is frequency- and DoA-dependent (γ(k, θ)).
To find a frequency- and DoA-independent γ, one could consider
averaging over DoAs and frequencies, which leads to γ̄ ≈ 12.4.
However, in the considered application, the target signal is speech,
which is a relatively low-pass signal. Therefore, we expect that low-
frequency components should play a larger role in finding γ.

To find the appropriate value of γ, we run simulations for nu-
merous acoustic setups and different γ ∈ Γ = {1, 1.5, 2, ..., 20}
and select the γ leading to the best DoA estimation performance. We
evaluate the performance in terms of Mean Absolute Error (MAE):

σ =
1

L

L∑
j=1

|θ − θ̂j |, (20)

where θ̂j is the estimated DoA for the jth frame of the signal, and L
is the number of target-active frames. We use the value of γ which
minimizes the MAE over the considered conditions.

To simulate a rigid spherical-head, we use theoretical HRTFs
proposed in [17]. We run simulations for 72 different configurations:
four different target sources (two males and two females), three dif-
ferent distances (1 m, 5 m and 10 m), three different SNRs (-10 dB,
0 dB and 10 dB) and two different noise types (large-crowd noise
and bottling-factory-hall noise). The signal duration for each con-
figuration is 60 s, and we use the speech database provided by [18]
for the target signals. For each configuration, the target source is
placed at 35 different angles at the front-horizontal plane, i.e. θ ∈
{−85◦,−80◦, · · · , 85◦}. The other simulation parameters are as
follows: the sampling frequency is 20 kHz, N = 2048, A = 1024,
and w(n) is a Hamming window.

From the simulation results, we find that γ = 6.5 provides min-
imum MAE averaged over all considered configurations and θs. As
expected, the obtained value of γ = 6.5 is less than the result of a
simple averaging of the scaling factor over the frequencies for the
considered spherical head, i.e. γ̄ ≈ 12.4 (Fig. 2).

5. SIMULATION RESULTS

In this section, we evaluate the proposed estimator under realistic
conditions which were not used in the simulation experiments to find
γ. Here, we study the impacts of the true DoA, noise type, SNR,
reverberation level, and the target distance on the performance of
the proposed estimator. In the following, the proposed estimator is
referred as “Spherical-Head-Model-based DoA estimator”.
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Fig. 4: Performance as a function of θ at SNR = 0 dB in an anechoic
room.

5.1. Setup

To simulate real world scenarios, we use two different sets of Head
Related Impulse Responses (HRIRs) measured with behind-the-ear
(BTE) hearing aids mounted behind each pinna of a head-and-torso-
simulator (HATS). The first set of HRIRs was measured in an ane-
choic chamber for 35 positions uniformly spaced on a semicircle in
the front-horizontal plane with radius 1 m centered at the HATS, i.e.
θ ∈ {−85◦,−80◦, ..., 85◦}. The second set was measured in a re-
verberant room shown in Fig. 3. These HRIRs were measured for 35
positions: five DoAs θ ∈ {−90◦,−45◦, 0◦, 45◦, 90◦} versus seven
distances d ∈ {0.5 m, 1 m, 1.5 m, ..., 3.5 m}. To simulate a signal
from a position, the signal is convolved with its related HRIR.

As target signal, we consider a four-minute signal composed
of two male and two female speech signals [18]. We consider two
different noise-types: speech-babble and bottling-factory-hall noise.
Speech-babble is synthesized by playing back different speech sig-
nals from each θ simultaneously. The TSP database [18], which
consists of different male and female voices, is used as noise sources.
The wide-band SNR in each simulation experiments is expressed rel-
ative to the left-ear microphone signals. The other simulation param-
eters are as follows: the sampling frequency is 20 kHz, N = 2048,
A = 1024, w(n) is a Hamming window, the length of w(n) and the
DFT order are the same, and Θ = {−90◦,−85◦, · · · , 90◦}. We use
the MAE (Eq. (20)) as performance metric.

5.2. Results and discussion

Fig. 4 shows the MAE of various “informed” DoA estimators as a
function of θ at an SNR of 0 dB for two different noise-types in an
anechoic room. Clearly, the proposed spherical-head-model-based
estimator performs better than existing “informed” DoA estimators,
and appears robust against the noise types. In contrast, the perfor-
mance of the “informed” GCC-PHAT-based estimator, introduced
in [9], is quite dependent on the noise types. As mentioned be-
fore, the TDoA-based estimator [9] relies on a free-field assumption,
which is more valid for θ ≈ 0◦ and less valid for θ ≈ ±90◦. The
influence of the free-field assumption is clearly visible in the results
of the TDoA-based estimator. On the other hand, because the pro-
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Fig. 5: Performance as a function of distance in a reverberant room
shown in Fig. 3 at SNR = 0 dB, and σ is averaged over all θs.
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Fig. 6: Performance as a function of SNR in a reverberant room
shown in Fig. 3. d = 3.5m, and σ is averaged over all θs.

posed estimator simulates the presence of the head, it improves the
performance of the DoA estimation compared with the TDoA-based
estimator for θ ∈ [−90,−50] or θ ∈ [60, 90].

Fig. 5 shows the MAE of the estimators averaged across the
noise types and θs as a function of target distance in a reverber-
ant room (Fig. 3). In general, increasing the distance will decrease
the direct-to-reverberant energy ratio [19], i.e. reverberation will de-
grade the received signals more at larger distances. However, the
proposed estimator still shows consistent improvement.

Fig. 6 shows the MAE of the estimators averaged across the
noise types and θs as a function of SNR in a reverberant situation. As
expected, the higher the SNR, the better the performance. The excel-
lent performance of the GCC-PHAT-based estimator at high SNRs
may be explained by the fact that the PHAT algorithm is almost ML
optimal in low-noise reverberant environments [20]. While the pro-
posed method already performs decently in this situation, we expect
that a signal model which directly takes the reverberation into ac-
count, e.g. [4, 21], would improve the performance further.

6. CONCLUSION

In this paper, we proposed a DoA estimator for a hearing aid system
which has access to the noise-free target signal via a wireless micro-
phone. We employed a spherical-head model and proposed a maxi-
mum likelihood approach to estimate the DoA. We showed that the
considered signal model allowed the likelihood function to be calcu-
lated efficiently via Inverse-Discrete- Fourier-Transform techniques.
In simulation experiments, we studied the effects of the true DoA,
noise type, SNR, reverberation level, and target distance on the per-
formance of the proposed algorithm. The proposed method improves
the estimation performance over recently proposed “informed” DoA
estimators, especially, when the target is at the sides of the head,
where the influence of a head model is largest.
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