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ABSTRACT

In this paper, we propose a method for moving-source localiza-
tion based on beamforming output and on sparse representation
of the source positions. The goal of this method is to achieve
spatial deconvolution of the beamforming, to provide accurate
source localization for pass-by experiments. To perform this
deconvolution, we use a smooth approximation of `1/`2 [1],
which is well suited for the recovery of sparse signals. We
validate this method on simulated data, and compare it to the
DAMAS-MS method [2], one of the classical methods used in
beamforming deconvolution.

Index Terms— Smoothed `1/`2 regularization, Sparse
representation, Moving-source localization, Beamforming de-
convolution, Acoustic signal processing

1. INTRODUCTION

Source localization is a classical problem in underwater acous-
tics. Many methods have been developed to solve this based
on array processing. The most classical is beamforming [3]
which consists in summing delayed signals. This method has
been extensively used due to its robustness against noise and
environmental mimatch. For pass-by experiments, due to the
moving of the acoustic sources, classical beamforming cannot
be used, and source mapping is achieved by beamforming for
moving sources (BF-MS) [2].

Nevertheless, BF-MS spatial resolution is limited, as the
image of a point source is the array transfer function, which is
comprised of a main lobe and secondary lobes. Consequently,
improvements have been proposed to overcome this problem,
among which there are deconvolution methods.

For moving source, Sijtsma recently proposed an extended
version of the deconvolution method CLEAN [4], known as
CLEAN-SC [5], with an approach similar to the Matching Pur-
suit [17]. These methods provides satisfactory results for high
signal-to-noise ratios (SNRs). Fleury and Bulté developped
another approach DAMAS-MS [2], an extended version of
DAMAS [6, 7] which can improve moving-source localization
in a high SNR context.

In the case of low SNR, the problem is difficult to solve,

Fig. 1. Modelization of the forward problem

and some other approaches need to be developed. For example,
a regularization term can be included to stabilize the solution.
Basically, the Tikhonov regularization is applied to jet noise-
source localization [8]. The sparse distribution of sources is
also commonly used [9, 10, 11, 12, 13], although these meth-
ods have been developed for fixed-source localization.

The goal of the present paper is to propose a new de-
convolution method 1 to apply to BF-MS results to improve
moving-source localization.

The strategy is to formulate the forward problem as an op-
timization problem, with constraints derived from the physical
context. The proposed cost function contains several parts:
(i) a data-fidelity term accounts for the noise characteristics;
(ii) the smoothed `1/`2 ratio [1] promotes sparse representa-
tion of moving-source locations; and (iii) the knowledge of
some physical properties of sources is also considered, such
as constraints on its maximal and minimal amplitudes.

The paper is organized as follows: section 2 presents the
proposed forward model; section 3 describes the minimiza-
tion problem, the proposed algorithm, and some mathematical
tools essential to this methodology; and simulation results are
evaluated both objectively and subjectively in Section 4, and
compared to the DAMAS-MS performance.

2. OBSERVATION MODEL

BF-MS compensates the Doppler effect and back-propagates
the pressures measured by the M sensor array to a calculation
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grid of N points, which correspond to the possible source lo-
cations. We consider the classical case in pass-by experiments
of sources, in the far-field, sharing the same movement and
with low Mach numbers, ‖

−−→
Ma‖ � 1. For these conditions,

some assumptions can be made during short time intervals of
duration T , which are referred to as snapshots [2]:
1) The sources are in fixed positions;
2) The Doppler effect is negligible at the frequencies and
speeds of interest (i.e., it does not exceed the frequency resolu-
tion defined for the localization results).
Under these assumptions, BF-MS can be implemented in a
simple way in the frequency domain. The measured acoustic
pressures are temporally sliced into K snapshots that are in-
dexed by k. The calculation grid of N points is defined for the
snapshot k. Note that this grid moves according to the known
global movement of the sources.

The beamforming computed for the nth calculation point
at the frequency ζ and for the snapshot k is given by:

bkn(ζ) =
(
wk
n

)∗
pk(ζ)

(
pk(ζ)

)∗
wk
n (1)

where ·∗ is the conjugate transpose, pk(ζ) is the M × 1 vector
of the Fourier transforms of the pressures measured by the
sensors during the snapshot k at frequency ζ, and wk

n is the
steering vector of size M × 1 between the M sensors and the
nth calculation point. The mth element wknm of wk

n is:

wknm =

(
M∑

m′=1

(
1

Rknm′

)2
)−1

exp(−jζRknm)

Rknm
(2)

where j is a complex number, andRknm is the distance between
themth sensor and the nth calculation point during the snapshot
k. We then define the vector of size b(ζ) ∈ RN where its nth

element bn(ζ) is the estimate of the BF-MS output for the nth

calculation point, through averaging over all the K snapshots:

bn(ζ) =
1

K

K∑
k=1

bkn(ζ). (3)

Note that in the case considered, the sensor array is a linear ar-
ray along the x-axis. Consequently, BF-MS is performed along
the x dimension, and the calculation grid is a one-dimension
vector of size Nx1 along x.

We set the following assumptions:
(H1): The sources are random variables that are mutually
independent and stationary;
(H2): The number M of sensors is greater than the number
Ns of sources (M > Ns), and these Ns sources are sparsely
distributed on the calculation grid;
(H3): The noise components are Gaussian with zero mean,
mutually independent, and independent of the sources.
On this basis, we can model the beamforming output at a given
frequency ζ:

b(ζ) = H(ζ)a(ζ) + e(ζ) (4)

where H(ζ) ∈ RN×N (Fig. 1-middle) is the array transfer
function matrix that contains the beamforming point-spread
functions. The (n, n′) ∈ {1, . . . , N}2 element of H(ζ) is:

hnn′(ζ) =
1

K

K∑
k=1

∣∣∣∣∣
M∑
m=1

(
wknm

)∗ exp(−jζRkn′m)

Rkn′m

∣∣∣∣∣
2

(5)

and e(ζ) ∈ RN is the autospectra of the measurement noise,
and a(ζ) ∈ RN is the autospectra of the possible sources
located at the N calculation points (Fig. 1-right), which we
want to recover. More details on the forward model are given
in [2, 14].

3. PROPOSED METHOD

3.1. Criterion to be minimized
In the following, we omit the frequency ζ for the sake of
simplicity. The purpose of this study is to identify a from
b through Equation (4), which leads to an inverse problem.
To solve this, we propose an optimization objective that mini-
mizes the following criterion:

minimize
a∈RN

1

2
‖Ha− b‖2 + λϕ(a) + ρ(a) (6)

The term ϕ models a regularization function that accounts for
the sparsity of the solution with the regularization parameter
λ ∈ [0,+∞[. When λ = 0, no regularization issue is con-
sidered, as presented in [2]. If ϕ = `22, the solution can be
achieved using an adapted Tikhonov regularization method.
This regularization function is not adapted for the considered
case of sparse source positions. Another possibility is to
choose ϕ = `1-norm to restore the sparsity of solution, as was
proposed in [9, 13]. In the present paper, we propose to use
a new regularization, the smoothed `1/`2 ratio proposed in
[1]. To validate the choice of this regularization term for the
case of sparse localization of acoustic moving sources, we
investigate two possibilities for ϕ: For every a ∈ RN :
1. The smooth approximation of `1-norm is named `1,α, where

`1,α(a) =
∑N
n=1

(√
a2n + α2 − α

)
, is one classical choice

for sparse representation.
2. The smoothed `1/`2 ratio as proposed in [1]: log

(
`1,α(a)+β
`2,η(a)

)
with, `2,η(a) =

√∑N
n=1 a

2
n + η2, (α, β, η) ∈ ]0,+∞[

3.
ρ : RN →] − ∞, +∞] introduces the prior knowledge
on the sources. We assume that ρ is a proper, lower
semicountinuous, convex function, continuous in its do-
main (dom ρ). One natural choice for ρ is the indicator
function of the hypercube [amin, amax]N (equal to 0 if
∀n ∈ {1, . . . , N}, an ∈ [amin, amax], and +∞ other-
wise), where amin (resp. amax) is the lower (resp. upper)
boundary of a. In practice, we choose amin as 0, which leads
to a nonnegative constraint on the source power variables, and
amax is the maximum value of b.
In the following, we denote:

ψ(a) =
1

2
‖Ha− b‖2 + λϕ(a). (7)
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3.2. Variable metric forward-backward algorithm
To provide a numerical solution for Equation (6), it is neces-
sary to minimize a nonconvex and nonsmooth criterion. If
the function ρ in (6) only imposes the non negativity of the
solution, the Multiplicative Iterative (MI) algorithm [18] can
be used. However, when more information on the solution is
available, e.g. the upper boundary of the solution, this algo-
rithm is no more appropriate. We then use the variable metric
forward-backward (VMF-B) algorithm proposed in [15] to
take into account all the available information on the solution.
This algorithm requires two optimization principles. The first
is related to the choice of a variable metric that relies upon
majorization-minimization properties; i.e.:

Definition 1 Let ψ : RN → R be a differentiable function.
Let a ∈ RN . Let us define, for every a′ ∈ RN :

q(a′,a) = ψ(a)+(a−a′)>∇ψ(a)+
1

2
(a−a′)>U(a)(a−a′),

where U(a) ∈ RN×N is a semidefinite positive matrix. Then,
U(a) satisfies the majorant condition for ψ at a if q(·,a) is
a quadratic majorant of the function ψ at a, i.e., for every
a′ ∈ RN , ψ(a′) ≤ q(a′,a).

The second optimization principle is the definition of the prox-
imity operator of a proper, lower semicontinuous, convex func-
tion ρ at a ∈ RN , relative to the metric induced by a symmetric
positive definite matrix U , and denoted by proxU,ρ(a), which
is the unique minimizer of ρ+ 1

2 (· −a)>U(· −a). When U is
an identity matrix of RN×N , then this operator reduces to the
original definition of the proximity operator in [16]: In this

Algorithm 1 VMF-B algorithm [15].
For every l ∈ N, and let γl be positive. Initialize with
a0 ∈ dom ρ.
Iterations:

For l = 0, 1, . . .⌊
ãl = al − γlQ(al)−1∇ψ(al)
al+1 = proxγ−1

l Q(al),ρ

(
ãl
)

algorithm, Q is a semidefinite positive matrix for building ma-
jorizing approximations of ψ, which is given by the following
proposition established in [1]:

Proposition 1 For every a ∈ RN , let
1. Q(1)(a) = Diag

((
(a2n + α2)−1/2

)
1≤n≤N

)
,

2. Q(2)(a) = 9
8η2 IN + 1

`1,α(a)+β
Q(1)(a).

where IN is the identity matrix of RN×N . Then, for j ∈
{1, 2}, Q(a) = ‖H‖2 IN +λQ(j)(a) satisfies the majoration
condition for ψ at a, and (j) corresponds to two choices for ϕ
in Section 3.1.
To conclude, we have proposed a deconvolution method to
apply to the BF-MS that imposes sparsity and regularity on the
acoustic moving-source positions. This method is validated in
the next section, and compared to the classical DAMAS-MS,
used in acoustics for moving-source deconvolution.
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Fig. 2. Simulated configuration of a pass-by experiment.
Source S1 in black, Source S2 in green, calculation grid in red.
Blue arrow represents the global movement of the sources.

4. SIMULATION

The simulated configuration is presented in Fig. 2. Here, we
consider two sources: a random broadband source located at
S1 = (−4m, 0m, 0m) (in black) and a sum of 3 sine func-
tions at frequencies 1200Hz, 1400Hz and 1800Hz located
at S2 = (1m, 0m, 0m) (in green). The sources are moving
jointly, following a linear trajectory of length 20m at constant
speed v = 2m/s. A linear antenna of 21 hydrophones equally
spaced by 0.5m records the propagated acoustic signals during
T = 10s. Zero-mean white Gaussian noise is added into the
recorded signals. To perform BF-MS, the moving calcula-
tion grid Xn(t), ∀n ∈ {1, . . . , N} has a length of 20m and
contains N = 101 points. The synthetic data were simulated
using the closed form solution for the propagation of moving
point sources in the free field (with a monopole radiation). For
the ideal case of the simulation, the source positions matched
with the positions of the grid points.

10 dB 0 dB -10 dB
DAMAS-MS 2.83 3.12 5.19
`1,α(a) 1.57 1.58 1.78

log
(
`1,α(a)+β
`2,η(a)

)
0.28 0.28 0.38

Table 1. Results obtained by DAMAS-MS and the ones
by VMF-B algorithm for the two penalty functions `1,α and
smoothed `1/`2, for three different SNRs. Results averaged
over 200 noise realizations.

The VMF-B algorithm with the two penalty functions `1,α
and smoothed `1/`2 and the classical DAMAS-MS are applied
to the BF-MS result. For VMF-B, the algorithm is launched on
104 iterations and can stop earlier at iteration l if ‖al−al−1‖ ≤√
N × 10−6.

Table 1 summarizes quantitatively the results in terms of re-
construction error on vector ā for different SNRs. The error is
defined as the `1,α norm of the error between the real ā and es-
timated â, which represents the ability of the method to recon-
struct accurate sparse source positions. The results show that
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in all of the cases, the VMF-B algorithm with the smoothed
`1/`2 has the smallest error. Consequently, in the following,
we only perform the VMF-B method with the smoothed `1/`2
penalty function.

After this quantitative study, it is necessary to study the
method performances qualitatively, directly on the localization
maps for a SNR of 10 dB. Fig. 3 shows the results for DAMAS-
MS and VMF-B for two frequencies, 1200Hz (a) and 770Hz
(b). The blue lines represent the reference sources to estimate
(in terms of position and amplitude). The magenta lines are the
BF-MS results, which are the starting points of the DAMAS-
MS and VMF-B methods. The results obtained by the VMF-B
algorithm are in green, and those of DAMAS-MS in red.

At the frequency 1200Hz (Fig. 3a) for which both sources
exist, both the DAMAS-MS and VMF-B methods detect the
source positions accurately. Nevertheless, DAMAS-MS gives
some false alarms at x = 3m and x = 5m, whereas VMF-B
does not. These false sources have smaller amplitudes, but they
are a real problem because the number of sources is generally
not known.

At frequency 770Hz (Fig. 3b) for which only the source
S1 exists, DAMAS-MS gives a wrong result with a spatially
extended source and false alarms, while the VMF-B algorithm
shows an excellent result in terms of position and amplitude.

−10 −5 0 5 10

100

110

120

−10 −5 0 5 10

100

110

120

(a) At frequency 1200Hz
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(b) At frequency 770Hz

Fig. 3. Autospectrum of the original sources in blue, BF-MS
output in magenta, results obtained by DAMAS-MS [2] in red
(top), and by VMF-B in green (bottom) for input data with
10 dB noise. (a) Frequency of 1200Hz. (b) Frequency of
770Hz.

The two-dimensional localization map is shown in Fig. 4,
which was obtained by applying the DAMAS-MS method
and VMF-B algorithm for all frequencies, where (a) is the
BF-MS map, and (b) and (c) are the DAMAS-MS and VMF-B
results, respectively. The first observation is that both methods
localize the two sources and allow their identification as one
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(a) Initial BF-MS
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(b) Deconvolution with DAMAS-MS
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(c) Deconvolution with VMF-B

Fig. 4. Localization in the frequency-distance domain ob-
tained. (a) Initial BF-MS (b) DAMAS-MS (c) VMF-B.

broadboand source and a sum-of-sine source.
Nevertheless, by studying the different zones indicated

in red in Fig. 4, which are related to the autospectrum of
the sine source at the three frequencies 1200Hz, 1400Hz,
and 1800Hz, some other conclusions can be made. The
VMF-B algorithm has obviously the better performances than
DAMAS-MS in term of localization, as the source S2 is spread
over several x positions by DAMAS-MS, whereas VMF-B
manages to estimate a point source at the true source position.

Moreover, concerning the broadband source S1, the
VMF-B algorithm has obviously better performances than
DAMAS-MS, especially between the frequencies of 700Hz
and 1000Hz, where DAMAS-MS fails to localize the source.

5. CONCLUSIONS

This paper proposes to adapt the VMF-B algorithm [15] for
moving-source localization in underwater acoustic data. As
the number of sources is small enough, its autospectrum has a
sparse representation, and it is possible to obtain more accurate
results of deconvolution through a regularization function. In
this paper, the smooth approximation of `1/`2 has shown very
good performance in term of localization and suppression of
false alarms. In future studies, it will be interested to validate
the method with real data and to extend it to the 2D version,
which would directly work with the entire frequency-distance
domain obtained after BF-MS at all the frequencies.
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