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ABSTRACT

In our previous work, we have revealed the phenomenon
of mainlobe orientation reversal (MOR) suffered by the first-
order steerable differential array (FOSDA) due to microphone
phase errors. However, only a deterministic analysis is con-
ducted in that work. To provide useful guidance for practi-
cal FOSDA design, this paper further studies the problem of
MOR in the presence of uncertain microphone phase errors
from two perspectives, i.e., interval analysis and statistical
analysis. In particular, two criteria are derived to facilitate
the FOSDA design in order to avoid undesirable MOR.

Index Terms— Differential microphone array, superdi-
rective beamforming, mainlobe orientation reversal.

1. INTRODUCTION

Differential microphone arrays (DMAs) have many attractive
virtues such as small size, high directivity, and frequency-
invariant beampattern [1, 2]. Therefore, continuous efforts
have been devoted to study and design DMAs in the past
two decades [3–10]. Typical applications of DMAs include
speech enhancement [11, 12], hearing aids [13], assistive lis-
tening headsets [14], hands-free communication [15], and au-
tomatic speech recognition [16].

The traditional DMAs are usually non-steerable, i.e., their
mainlobe orientation may not be easily steered to an arbitrary
desired direction. For example, the mainlobe orientation of a
first-order DMA is always fixed along the array axis [4]. To
combat this problem, several steerable DMAs have been pro-
posed [4,17,18]. Among them, the first-order steerable differ-
ential array (FOSDA) whose spacial response is constructed
via the linear combination of a monopole and two orthogo-
nal dipoles using a four-element square array, is particularly
interesting [17], since it has frequency-invariant equi-shaped
beampatterns for the orthogonal dipoles for all frequencies.
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Fig. 1. The configuration of the FOSDA.

It has been noted that although DMAs have some attrac-
tive virtues mentioned above, they are very sensitive to mi-
crophone mismatches [19]. Recently, we have found the phe-
nomenon of mainlobe orientation reversal (MOR) suffered by
the FOSDA in the presence of microphone phase errors [20],
which implies the failure of FOSDA design. In contrast, the
FOSDA with microphone gain errors is immune to the MOR.
In [20], only a preliminary deterministic analysis, i.e., for de-
terministic microphone phase errors, has been presented. In
practice, however, microphone phase errors are usually un-
certain and may change over time [21]. Therefore, further
work is indispensable to provide a useful guidance to guaran-
tee the FOSDA being steered around the desired directions in
the presence of uncertain microphone phase errors. In this pa-
per, we further studies the MOR problem from two perspec-
tives, i.e., interval and statistical analysis. In particular, two
criteria have been derived to guide practical FOSDA design
to avoid the MOR. Moreover, as a byproduct, this paper also
presents a proof for the statement in [20] that the FOSDA is
more susceptible to suffering from MOR at low frequencies.

2. MATHEMATICAL MODEL

As shown in Fig. 1, the FOSDA consists of four microphones
in a square, where the distance between two nondiagonal mi-
crophones is d. For a unit-amplitude incident plane wave
with frequency f and incident angle (θ, ϕ) (θ ∈ [0, π] and
ϕ ∈ [0, 2π] denote the elevation and azimuth angles, respec-
tively), the ith microphone signal is given by

Ei = exp [jωt+ jω sin θ (pxi cosϕ+ pyi sinϕ) /c] (1)
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where ω = 2πf , t denotes the time, pxi and pyi refer to the
x- and y- coordinates of the ith microphone, respectively, c is
the speed of sound, and j =

√
−1.

The ith microphone signal with microphone phase errors
can be expressed as E(p)

i = Eie
jψi , where ψi denote micro-

phone phase errors. Then the normalized array response of
the FOSDA with its mainlobe oriented toward ϕ = φs is

E
(p),φs
s(α) (θ, ϕ) =αE

(p)

m (θ, ϕ) +(1−α)E(p),φs
d (θ, ϕ) (2)

where α ∈ [0, 1] is the directivity controlling parameter,

E
(p)

m (θ, ϕ) and E
(p),φs
d (θ, ϕ) represent the normalized re-

sponses of monopole and steered dipole, respectively. In (2),
the high-pass frequency response and π/2 phase shift have
been compensated out of the dipole responses.

The normalized response of the monopole is

E
(p)

m (θ, ϕ) =
1

4

4∑
i=1

E
(p)
i

=
1

2

{
ejυ24 cos (Θ24 + τ24) + ejυ31 cos (Θ31 + τ31)

}
where υ24 = (ψ2 +ψ4)/2, υ31 = (ψ3 +ψ1)/2, τ24 = (ψ2 −
ψ4)/2, τ31 = (ψ3 − ψ1)/2, Θ24 =

√
2Ω sin θ cos (ϕ− π/4),

Θ31 =
√
2Ω sin θ cos (ϕ+ π/4), Ω = ωd/(2c).

The steered dipole is constructed by two orthogonal
dipoles oriented toward ±π/4, i.e.,E(p),−π/4

d = E
(p)
3 −E(p)

1 ,
and E(p),π/4

d = E
(p)
2 −E

(p)
4 . The normalized response of the

steered dipole can be expressed as

E
(p),φs
d (θ, ϕ)

=
c

j
√
2ωd

[
cos

(
φs +

π

4

)
E

(p),−π/4
d (θ, ϕ)

+ sin
(
φs +

π

4

)
E

(p),π/4
d (θ, ϕ)

]
≈ ejυ31 cos

(
φs +

π

4

)[
sin θ cos

(
ϕ+

π

4

)
+

τ31√
2Ω

]
+ejυ24 sin

(
φs +

π

4

)[
sin θ sin

(
ϕ+

π

4

)
+

τ24√
2Ω

]
.

3. MAIN RESULTS

In this section, we first revisit the MOR problem of the
FOSDA with deterministic microphone phase errors. Then,
we further studies the MOR with uncertain microphone phase
errors from interval and statistical analysis perspectives, re-
spectively.

3.1. The MOR of the FOSDA Revisited

Recall from [20] that the mainlobe orientation of the FOSDA
is at φ̃s ≈ φs if the array directivity controlling parameter α

satisfies

α ≥ |κ|2 − |γ|2

||κ|2 − |γ|2 + 2ℜ{γ − κ}|
, αT (3)

where γ = E
(p),φs
d (θ, φs), and κ = E

(p),φs
d (θ, φs + π).

Otherwise, we have φ̃s ≈ φs + π, i.e., the MOR occurs.
To proceed, we need to revisit the above finding. Notice

that, for small microphone phase errors, it follows that |κ| ≈
ℜ{E(p),φs

d (θ, φs + π)} , κr, and |γ| ≈ ℜ{E(p),φs
d (θ, φs)} ,

γr. Consequently, αT in (3) can be reformulated as

αT =
(κr − γr) (κr + γr)

|κr − γr| |κr + γr − 2|
. (4)

Further note that

κr−γr ≈−2 sin θ (5)

κr+γr ≈
√
2

Ω

[
cos

(
φs+

π

4

)
τ31+sin

(
φs+

π

4

)
τ24

]
. (6)

By (5) and (6), Eq. (4) can be reduced to

αT = − κr + γr
|κr + γr − 2|

=


− 1

|1− 2
κr+γr

| , κr + γr > 0;

0, κr + γr = 0;
1

1+ 2
|κr+γr|

, κr + γr < 0.

(7)
Since α ∈ [0, 1], by (7) we deduce that the MOR occurs if and
only if κr + γr < 0. Moreover, by (7) we have the following
relationships:

f ↓=⇒ Ω ↓=⇒ |κr + γr| ↓=⇒ αT ↑ (8)

which implies that the FOSDA is more susceptible to suffer-
ing from MOR at low frequencies.

3.2. Interval Analysis

Suppose that microphone phase errors are unknown-but-
bounded, i.e., ψi ∈ [−∆ψ,∆ψ] with ∆ψ > 0, and that
the frequency range of interest f ∈ [fl, fh], i.e., Ω ∈[
πd
c fl,

πd
c fh

]
,

[
Ω,Ω

]
. From the analysis above, αT

will take values over some interval [αT , αT ]. To guarantee
no MOR occurs, the array directivity controlling parameter
α should satisfy α > αT . Therefore, we are particularly
interested in finding the lowest bound of α, i.e. αT .

To this end, first we can rewrite (6) as

κr + γr ≈
√
2

Ω

[
cos

(
φs +

π

4

)
τ31 + sin

(
φs +

π

4

)
τ24

]
=

1

Ω

√
2 (τ231 + τ224) sin

(
β + φs +

π

4

)
(9)

where β satisfies tanβ = (τ31/τ24). Recall that the mainlobe
orientation of the FOSDA may be reversed if and only if κr+
γr < 0. Thus, we have

αT =
1

1 + 2
max{|κr+γr|}

(10)

351



By (9), we deduce that κr + γr attains its maximum value
when either one of the following conditions holds: 1) τ31 =
∆ψ , τ24 = ∆ψ , β = π/4, φs = π; 2) τ31 = ∆ψ , τ24 =
−∆ψ , β = 3π/4, φs = π/2; 3) τ31 = −∆ψ , τ24 = −∆ψ ,
β = 5π/4, φs = 0; and 4) τ31 = −∆ψ , τ24 = ∆ψ , β =
7π/4, φs = 3π/2. Accordingly, we have

αT =
1

1 + Ω
∆ψ

=
1

1 + πfld
c∆ψ

. (11)

Recall that, to avoid the MOR, it should satisfy α > αT .
Therefore, reconsidering (11), we have

απfld+ (α− 1)c∆ψ > 0. (12)

3.3. Statistical Analysis

Suppose that the microphone phase errors ψi are independent
and each follows a Gaussian distribution with zero mean and
variance σ2, i.e., ψi ∼ N (0, σ2). In this circumstance, αT
will be a random variable, and we are interested in determin-
ing the probability of absence of MOR for a given directivity
controlling parameter α.

Sinceψi ∼ N (0, σ2), it follows that τ31, τ24 ∼ N (0, 2σ2).
To simplify notation, we denote χ , κr + γr. Then by (6),
we have χ ∼ N (0, σ2/Ω2). Recall that the mainlobe orien-
tation may be reversed if and only if χ < 0. Therefore, the
probability of no MOR for a given α ∈ [0, 1] can be derived
as follows

P (α > αT ) = P (αT < 0) + P (0 ≤ αT < α)

=
1

2
+ P

(
χ

χ− 2
< α

)
=

1

2
+ P

(
χ >

2α

α− 1

)
=

1

2
+

∫ 0

2α
α−1

Ω√
2πσ

exp

(
−χ

2Ω2

2σ2

)
dχ

=
1

2
− 1

2
erf

[ √
2Ωα

σ (α− 1)

]
(13)

where erf[·] denotes the Gaussian error function. Note that
in the derivation above, we have only considered a given fre-
quency. For a given frequency range of interest f ∈ [fl, fh],
by using the relation (8), we can deduce that the probability
of no MOR for a given α ∈ [0, 1] can be expressed as

P (α > αT ) =
1

2
− 1

2
erf

[ √
2πdflα

cσ (α− 1)

]
. (14)

By (14), to guarantee no MOR with probability one, it should
satisfy

erf

[ √
2πdflα

cσ (α− 1)

]
+ 1 = 0. (15)

Table 1. Design Specifications of the FOSDA
lowest frequency 200 Hz
highest frequency 3700 Hz
maximum signal attenuation −3 dB
maximum noise sensitivity 20 dB

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

# of simulation trials

α
T

 

 

Simulation results of αT

Theoretical upper bound of αT

Fig. 2. Simulation results of αT with random microphone
phase errors in [−0.05, 0.05] rad.

4. NUMERICAL EVALUATION

In this section, we apply the theoretical results presented
above to the FOSDA design for speech communication appli-
cations. The design specifications are shown in Table I, same
as considered in [17]. Note that the array size should satisfy
2.03 ≤ d ≤ 2.28 cm under the considered specifications [17].

Firstly, we perform the interval analysis on the FOSDA.
Assume the size of the FOSDA d = 2.28 cm and micro-
phone phase errors ψi ∈ [−0.05, 0.05] radian. By (11), it fol-
lows that the theoretical lowest bound of α is αT = 0.5427,
which implies that the array directivity controlling parame-
ter α should be chosen greater than 0.5427 to guarantee that
no MOR occurs. To justify this theoretical finding, several
simulations have been conducted. Fig. 2 shows the simula-
tion results of αT for 1000 random trials with different mi-
crophone phase errors, and Figs. 3(a) and 3(b) show the nor-
malized array responses of the FOSDA with 0 < α < 0.5427
and 0.5427 < α < 0.7, respectively. Both Fig. 3(a) and
Fig. 3(b) are the results of 50 Monte Carlo simulations with
random array directivity controlling parameter α and micro-
phone phase errors ψi. As we can see from Fig. 2, the sim-
ulation results of αT are well bounded below the theoretical
bound αT = 0.5427. Moreover, from Fig. 3 we can see that it
may suffer from MOR when α < αT , while it does not when
α > αT . For clarity, the cases with MOR are highlighted
with red dotted lines in Fig. 3(a).

Having demonstrated the validity of our theoretical anal-
ysis, now we provide a useful guidance for practical FOSDA
design to avoid the MOR from a interval-analysis perspec-
tive. In Fig. 4, the lowest bounds of α to guarantee absence
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Fig. 3. Normalized array responses of the FOSDA with ran-
dom microphone phase errors in [−0.05, 0.05] rad., where
αT = 0.5427. (a) 0 < α < αT . (b) αT < α < 0.7.
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Fig. 4. Lowest bounds of α to guarantee no MOR versus array
size and microphone phase error.

of MOR of the FOSDA with varying array size and micro-
phone phase errors are presented. Alternatively, given a spe-
cific array directivity controlling parameter α, we can also
determine the tolerance for microphone phase errors. In par-
ticular, for the two well-known FOSDAs with cardioid and
hypercardioid responses, it shows that the microphone phase
errors should be less than 0.042 rad. or 2.41◦ for α = 0.5
(cardioid-response FOSDA), and less than 0.014 rad. or 0.8◦

for α = 0.25 (hypercardioid-response FOSDA).
Next, we conduct the statistical analysis on the FOSDA.

Assume the size of the FOSDA d = 2.28 cm and all mi-
crophone phase errors follow a Gaussian distribution with
zero mean. Fig. 5 shows the probability of no MOR, i.e.,
P (α > αT ), as a function of α with σ = 0.001, 0.01, and
0.1 rad., respectively, where 10000 Monte Carlo simulation
trials have been carried out, and the results based on which
are denoted as “simulation results”. To verify our theoretical
statistical analysis, the theoretical results obtained by (14) are
also presented in Fig. 5. As we can see from the figure, the
theoretical results are well consistent with the simulation re-
sults. Moreover, as we can expect, the probability of no MOR
tends to increase with α increasing or σ decreasing.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

α

P
(α

>
α
T
)

 

 

σ = 0.1 rad., theoretical results
σ = 0.1 rad., simulation results
σ = 0.01 rad., theoretical results
σ = 0.01 rad., simulation results
σ = 0.001 rad., theoretical results
σ = 0.001 rad., simulation results

Fig. 5. The probability of no MOR versus α.
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Fig. 6. Lowest bounds of α to guarantee no MOR with prob-
ability one versus array size and standard deviation of micro-
phone phase error.

To provide a guidance for avoiding the MOR from
statistical-analysis perspective, Fig. 6 shows the lowest
bounds of α to guarantee no MOR with probability one un-
der various array sizes and standard deviations of microphone
phase error. On the other hand, given specific array directivity
controlling parameter α, we can also determine the tolerance
for microphone phase errors to guarantee no MOR with prob-
ability one. Specifically, it follows that the standard deviation
of microphone phase errors should satisfy σ < 0.014 rad. or
σ < 0.8◦ for the cardioid-response FOSDA, and σ < 0.0047
rad. or σ < 0.27◦ for the hypercardioid-response FOSDA.

5. CONCLUSIONS

In this paper, we have further studied the MOR problem suf-
fered by the FOSDA in the presence of uncertain microphone
phase errors from two perspectives, i.e., interval and statisti-
cal analysis. Two design criteria have been derived to avoid
the MOR with uncertain microphone phase errors, which are
helpful to practical FOSDA design. Several design examples
have demonstrated the effectiveness of the theoretical results.
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