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International Audio Laboratories Erlangen∗ , Am Wolfsmantel 33, 91058 Erlangen, Germany

ABSTRACT

An increasing number of spatial filtering approaches requires nar-

rowband direction-of-arrival (DOA) estimates. State-of-the-art

(SOA) estimators such as root-MUSIC and ESPRIT are computa-

tionally complex and can be used only with specific array geome-

tries. In this work, a low complexity DOA estimator is proposed

that can be applied to arbitrary array geometries. The DOA is esti-

mated by minimizing the weighted error between the observed and

expected inter-microphone phase differences. The complexity of the

proposed DOA estimator is significantly lower compared to that of

the SOA estimators while providing a similar performance.

Index Terms— Direction-of-arrival estimation, narrowband,

microphone arrays

1. INTRODUCTION

Many spatial filtering approaches (e. g., [1]) require narrowband

direction-of-arrival (DOA) estimates which are updated for each

time and frequency. Well-known narrowband DOA estimators such

as ESPRIT [2] and root-MUSIC [3] suffer from two major draw-

backs: First, they are computationally too expensive to be carried out

for each time and frequency due to the involved eigenvalue decom-

positions. This is true also for their real-valued formulations unitary

ESPRIT [4] and unitary root-MUSIC [5]. Secondly, they can be

applied only to specific array geometries. For example, ESPRIT re-

quires a microphone array which can be separated into two identical,

rationally invariant subarrays. The original root-MUSIC [3] requires

an uniform linear array (ULA). In [6], root MUSIC was derived for

nonuniform linear arrays (NLAs), however, the microphones must

be located on an equidistant grid.

Computationally less complex DOA estimators, which can be

applied to almost any array geometry, usually consider the time

difference-of-arrival (TDOA) or phase difference between micro-

phone pairs of the array. The TDOA information is typically used

when computing broadband DOA estimates. A recent example is

discussed in [7], where the broadband DOAs are estimated by solv-

ing a weighted least-squares approach. Phase difference information

is typically used to estimate narrowband DOAs. In [8], the phase

differences between all pairs of a microphone array are compared to

reference phase differences to obtain the desired DOA information.

This approach requires no knowledge about the array geometry, but

includes a prior array calibration step. In [9, 10], the calibration step

is avoided by considering information on the array geometry. The

phase difference vectors, which are closely located to the phase dif-

ference manifold, are used to estimate a probability density function,

from which the DOA can be estimated using a grid search. An ap-

proach with lower computational complexity, which directly outputs
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a DOA estimate, was presented in [11]. Here, the DOA is found

with a least-squares approach based on the phase differences be-

tween the first and other microphones. Due to the irregular array

geometry, the approach can be applied even above the spatial alias-

ing frequency. However, the approach does not exploit all available

phase difference information since not all possible microphone pairs

are considered. The approach in [12] is similar to the one in [11] but

considers all possible microphone pairs in the least squares formula-

tion. Moreover, the authors propose a normalization of the estimated

DOA vector to reduce the impact of errors. With this approach, the

DOA can be estimated reliably in three dimensions with an arbi-

trary 3-dimensional array as long as no microphone pair violates the

spatial sampling theorem. Note that neither [11] nor [12] compares

the accuracy and computational complexity of the proposed least-

squares based DOA estimator to the well-known DOA estimators

such as ESPRIT or root-MUSIC.

In this paper, we propose a low-complexity narrowband DOA

estimator similar to [12] which estimates the DOA based on the

phase differences between all available microphone pairs using a

least-squares approach. In contrast to [12], we avoid the normal-

ization of the estimated DOA vector, which enables us to deter-

mine the DOA in three dimensions with an arbitrary 2-dimensional

microphone array. Moreover, we formulate a frequency-dependent

weighted least-squares problem to exclude microphone pairs from

the processing which violate the spatial sampling theorem. There-

fore, in contrast to [12], the spatial aliasing frequency is determined

by the spacing of the smallest microphone pairs. Throughout the

paper we study the computational complexity of the proposed DOA

estimator compared to ESPRIT and root-MUSIC and show that a

similar estimation accuracy can be achieved.

2. SIGNAL MODEL

We consider the time-frequency domain (frequency index k, time

index n) and assume for each (k, n) a single plane wave. The sound

is captured with M omnidirectional microphones located in r1...M .

The microphone signals are

x(k, n) = xs(k, n) + xn(k, n), (1)

where xs(k, n) = [Xs,1(k, n), . . . , Xs,M (k, n)]T are the M micro-

phone signals proportional to the plane wave and xn(k, n) models

the microphone self-noise. The single-wave model in (1) is often

assumed in acoustic DOA estimation approaches and holds even if

multiple sources are active at the same time given that the source

signals are sufficiently sparse. This assumption normally holds for

speech signals in the time-frequency domain [13, 14]. The m-th mi-

crophone signal proportional to the plane wave can be written as

Xs,m(k, n) =
√

Ψs(k, n)a(k,n, rm)eφs(k,n), (2)
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where Ψs(k, n) is the power of the wave and n(k, n) is a unit-norm

vector corresponding to the DOA of the wave. The phase of the

wave at the origin of the coordinate system is given by φs(k, n).
The function

a(k,n, r) = eκ(k)r
T
n

(3)

describes the phase shift of the wave along the displacement vec-

tor r. Here, κ(k) is the wavenumber for the given frequency index

k. When considering a 3-dimensional coordinate system, the DOA

vector n(k, n) can be expressed as

n(k, n) = [cos(ϕ) cos(ϑ), sin(ϕ) cos(ϑ), sin(ϑ)]T , (4)

where ϕ(k, n) and ϑ(k, n) are the azimuth and elevation, respec-

tively, of the wave. For a 2-dimensional coordinate system where

the sound propagates in the horizontal plane, we have

n(k, n) = [cos(ϕ), sin(ϕ)]T . (5)

Since the different components in (1) are assumed to be mutually

uncorrelated, we can write the power spectral density (PSD) matrix

of the microphone signals as

Φx(k, n) = E
{
x(k, n)xH(k, n)

}
(6a)

= Φs(k, n) +Φn(k), (6b)

where Φs(k, n) and Φn(k) are the PSD matrix of the plane wave

and noise, respectively. The (m′m)-th element of Φs(k, n) is the

cross PSDs of the captured plane wave between the microphones m
and m′. It can be written as

Φs,m′m(k, n) = E
{
Xs,m′ (k, n)X∗

s,m(k, n)
}

(7a)

= Ψs(k, n)a(k,n, rmm′ ), (7b)

where rmm′ = rm′ − rm. The noise of the different microphones is

assumed to be independent and identically distributed (iid). Hence,

the noise PSD matrix can be written as

Φn(k) = Φn(k)IM , (8)

where Φn(k) is the noise power and IM is the M ×M identity ma-

trix. Given this assumption, the off-diagonal elements of Φx(k, n)
are equal to the cross PSDs of the direct sound, i. e.,

Φx,m′m(k, n) = Φs,m′m(k, n), m′ 6= m. (9)

The aim of the paper is to estimate the DOA vector n(k, n) (or

ϕ and ϑ) from the noisy microphone signals x(k, n).

3. WEIGHTED LEAST SQUARES DOA ESTIMATOR

We assume a single narrowband plane wave and iid noise, i. e., the

microphone input PSD matrix Φx(k, n) is given in (6). From (7b)

and (3) we can see that the phase of Φs,m′m(k, n) contains informa-

tion on the DOA of the direct sound, i. e.,

∠Φs,m′m(k, n) = κ(k)rTm′mn(k, n), (10)

where rm′m = rm − rm′ . Due to (9) the DOA can be determined

from the input cross PSDs Φx,m′m(k, n). For this purpose, we col-

lect all cross PSD Φx,m′m(k, n) of the upper triangle1 of Φx(k, n)
in the vector

φx(k, n) = [Φx,12, . . . ,Φx,ij , . . . ,Φx,NM ]T ∀i, j, (11)

1Clearly, the lower triangle does not provide additional information as the
matrix is Hermitian.

where N = M−1, 1 ≤ i ≤ N , and i < j ≤ M . In practice, we se-

lect the elements of φx(k, n) from the input PSD matrix Φx(k, n),
which can be estimated with (6a) when approximating the expec-

tation by a temporal averaging. In this case, the vector in (11) is

denoted by φ̂x(k, n). Since the estimated PSDs contain estimation

errors, we determine the DOA using a least squares (LS) approach.

Using (9) and (10), the phases of the estimated PSDs in φ̂x(k, n)
can be written as

µ̂s(k, n) = ∠φ̂x(k, n) (12a)

= Q(k)n(k, n) +∆(k, n), (12b)

where

Q(k) = κ(k)[r12, . . . , rij , . . . , rNM ]T, (13)

is an B × D matrix [B = M
2
(M − 1)] which describes the array

geometry. Here, D is the number of dimensions of the considered

Cartesian coordinate system, i. e., the number of elements of n(k, n)
and r, respectively. The vector ∆(k, n) contains the errors of the el-

ements of µ̂s(k, n) due to estimation of the input PSD matrix. In the

following, we consider a weighted least squares (WLS) approach,

which minimizes the weighted ℓ2-norm of ∆(k, n), to find an esti-

mate of n(k, n), i. e.,

n̂(k, n) = argmin
n

tr
{
∆

T(k, n)W(k, n)∆(k, n)
}
, (14)

where W(k, n) = diag {W11(k, n),W22(k, n), . . . ,WBB(k, n)}
is a time and frequency dependent B×B diagonal matrix containing

the weights for each element of ∆ that are discussed later. The LS

solution is given by

n̂(k, n) = [B(k, n)Q(k)]−1
B(k, n)µ̂s(k, n). (15)

where B(k, n) = QT(k)W(k, n). Clearly, for computing n̂(k, n)
the matrix QT(k)W(k, n)Q(k) must have full rank. This requires

that the array microphones span a D-dimensional coordinate sys-

tem. In other words, estimating n(k, n) in D dimensions requires

a D-dimensional microphone array, which represents the only re-

striction on the microphone configuration. For example, when a

3-dimensional microphone array is used, we can estimate the 3-

dimensional DOA vector n(k, n) in (4). This allows us to compute

both the azimuth ϕ(k, n) and elevation ϑ(k, n) of the DOA. With

a planar microphone array (D = 2), we can estimate the first two

dimensions of n(k, n) in (4). In this case, we can compute the az-

imuth ϕ(k, n) as well as the absolute value of the elevation ϑ(k, n),
i. e., an up-down ambiguity remains. Note that the approach in [12]

can estimate only ϕ(k, n) when using a planar array (D = 2) as the

authors normalize the estimated vector n̂(k, n). If a linear array is

used (D = 1), the matrix Q(k) becomes a vector, i. e.,

q(k) = κ(k) [r12, . . . , rij , . . . , rNM ]T, (16)

where rij is the spacing between microphone i and j. In this case,

we can estimate the first dimension of the DOA vector n(k, n). As-

suming that the microphone array defines the x-axis of the coordi-

nate system and that the sources are located in the horizontal plane,

then the first dimension of n(k, n) is the cosine of the azimuth of the

DOA in (5). Thus,

cos ϕ̂(k, n) = v
T(k, n) µ̂s(k), (17)

where v(k, n) = W(k, n)q(k)[qT(k)W(k, n)q(k)]−1. In this

case, we can compute ϕ̂(k, n) in the range [0, π], i. e., we cannot

distinguish if the sound arrives from the front or back of the array.
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Typically, the weights W(k, n) are chosen depending on the er-

ror variance [15], in our case, the variance of the elements of the

vector ∆(k, n). These variances depend on the signal-to-noise ra-

tio (SNR), the frequency, the microphones spacing rij , as well as on

the DOA of the plane wave. However, since the latter is unknown,

we assume equal error variances in this work, which would lead to

unit weights, i. e., W(k, n) = IB ∀n. Instead of compensating for

different error variances, the weights can also be used to exclude out-

liers. This is necessary because the LS approach is known to be very

sensitive to outliers. In our case, outliers can appear when a micro-

phone pair is used above the spatial aliasing frequency, i. e., when

using a cross PSD Φ̂x,ij(k, n) for which ‖κ(k)rij‖ ≥ π. To ex-

clude these outliers, we set the corresponding weights to zero. This

means, the weights are given by

Wbb(k) =

{
1, qb < π

0, otherwise,
(18)

where b ∈ [1, B] and qb is the ℓ2-norm of the b-th row of Q.

Note that the b-th microphone pair ij can be excluded (i. e., the

corresponding weight can be set to zero) if the resulting matrix

QT(k)W(k)Q(k) remains full rank. Otherwise, the inverse in (15)

cannot be computed. When defining the elements of W(k, n) time-

invariant as in (18), we can compute v(k) in (17) in advance for the

given microphone array. This yields a DOA estimator with very low

computational complexity.

4. COMPUTATIONAL COMPLEXITY

This section discusses the computational complexity of the DOA es-

timator proposed in Sec. 3 and two state-of-the-art (SOA) DOA esti-

mators, namely estimation of signal parameters via rotational invari-

ance techniques (ESPRIT) and root-MUSIC. For this purpose, we

assume a linear microphone array with M microphones. All con-

sidered DOA estimators require an estimate of the input PSD matrix

Φx(k, n) and provide an estimate of the cosine of the DOA ϕ(k, n).
To estimate the DOA of a single plane wave with ESPRIT, the

estimated Φx(k, n) needs to be decomposed using an eigenvalue

decomposition (EVD). The eigenvector corresponding to the largest

eigenvalue represents the so-called signal subspace and the DOA is

estimated by considering the phase differences between signal sub-

space elements [2]. The EVD is the most expensive step in ESPRIT

resulting in the computational complexity of O(M3) [16].

The estimation of the DOA of a single plane wave with root-

MUSIC also requires an EVD of Φx(k, n). The eigenvectors of

Φx(k, n) corresponding to the M − 1 smallest eigenvalues repre-

sent the so-called noise subspace Q(k, n). For the noise subspace

Q(k, n) we have

a
H(k, n)Q(k, n)QH(k, n)a(k, n) = 0, (19)

where a(k, n) is the propagation vector for the plane wave, which

depends on the DOA of the wave. The m-th element of a(k, n) is

given by (3). The original root-MUSIC [3] is applied to ULAs. For

such an array, we have a =
[
1, z1, z2, . . . , zM−1

]T
, where z =

e−jκ(k)r cosϕ(k,n) with r being the inter-microphone spacing. From

this we can see that the left-hand side of (19) represents a complex

polynomial of order P = 2(M − 1). Estimating the DOA requires

to compute the roots of the polynomial [3], for which the complexity

is Θ(P 2 log(P )) [17]. Note that root-MUSIC can also be applied to

a NLA array where the microphones are located on an equidistant

grid with spacing r [6]. In this case, the propagation vector becomes

Approach Complexity

ESPRIT O(M3)
Root-MUSIC (ULA) O(M3) + Θ(P 2 log(P )), P = 2(M − 1)
Root-MUSIC (NLA1) O(M3) + Θ(P 2 log(P )), P = 2(l/r − 1)
Proposed WLS-based O(M)

Table 1. Computational complexity of the studied DOA estimators

(1where all microphones lie on an equidistant grid with spacing r)

a =
[
1, . . . , zM

′
−1

]T
, where M ′ = l/r. Here, l is the array size

and M ′ is the number of grid points used by the NLA. The order

of the polynomial is now given by P = 2(M ′ − 1), which can

become large when the inter-microphone spacings of the NLA are

very different. Thus, when r is much smaller compared to l, the

computation complexity of the root finding for a NLA can become

significantly larger than the computational complexity for a ULA.

The WLS-based DOA estimator proposed in Sec. 3 uses the off-

diagonal elements of Φx(k, n), i. e., the cross PSDs Φx,m′m(k, n),
in (12). The cosine of the DOA ϕ(k, n) is then estimated using (17).

The dot product of the two vectors in (17) results in a computational

complexity of O(M). Since the vector v(k) can be computed in

advance as explained in Sec. 3, O(M) is the computational com-

plexity for the WLS-based estimator, which is significantly smaller

than the computational complexity of ESPRIT or root-MUSIC. Note

that the computational complexity can be further reduced by taking

into account the fact that for some frequencies v(k) = 0.

Table 1 summarizes the computational complexity of the dif-

ferent DOA estimators. For ESPRIT and root-MUSIC, the specified

values represents the lower bound as only the complexity of the EVD

and root finding, respectively, are taken into account.

5. SIMULATION RESULTS

We have carried out simulations to study the performance of the pro-

posed DOA estimator for a linear array. For this purpose, we have

simulated a single plane wave with specific frequency, DOA, and

random phase using (2). We were considering different microphone

array geometries which are explained later. The microphone signals

were computed with (1) where the noise xn(k, n) was modeled as

spatially white Gaussian noise with specific SNR. From the micro-

phone signals x(k, n) we have estimated the input PSD Φx(k, n)
with (6a), where the expectation was approximated by a temporal

averaging over 10 realizations of the microphone signals. This cor-

responds to a typical averaging length in practice. Finally, the DOA

ϕ(k, n) of the plane wave was estimated from Φx(k, n) with (de-

pending on the array geometry)

• ESPRIT: ESPRIT [2] (subarrays with maximum overlap)

• RM-ULA: originally proposed Root-MUSIC for ULAs [3]

• RM-NLA: Root-MUSIC for NLAs proposed in [6]

• WLS: WLS estimator proposed in Sec. 3 computed with (17).

To evaluate the performance of the different DOA estimators, we

are considering the mean error ǫ(k, n) and error variance σ2(k, n),
which are computed as

ǫ(k, n) = E {ϕ̂(k, n) − ϕ(k, n)} , (20a)

σ2(k, n) = E

{(
ϕ̂(k, n) − ϕ(k, n)− ǫ(k, n)

)2
}
. (20b)

The expectation was approximated by averaging over 20000 realiza-

tions of the experiment.
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Fig. 1. DOA estimation performance for a linear array with M = 6
microphones

The mean error ǫ(k, n) and standard deviation σ(k, n) are de-

picted in Fig. 1(a) as a function of frequency. We were consid-

ering a ULA with M = 6 microphones and microphone spacing

r = 3.2 cm. The noise power was chosen such that the SNR

was indirectly proportional to the frequency with 10 dB SNR at

f = 1kHz. The DOA of the plane wave was chosen randomly

in the range ϕ(k, n) ∈ [0, 90◦] for each realization (uniform dis-

tribution). The DOA was estimated with RM-ULA, ESPRIT, and

WLS. The number p(k) = tr {W(k)} depicted in the plot indicates

how many microphone pairs were considered effectively by WLS

for the given frequency range. The results in Fig. 1(a) show that

all DOA estimators provided almost unbiased results when averag-

ing the error over random DOAs. For RM-ULA and ESPRIT the

error variance became slightly smaller for higher frequencies. At

lower frequencies, WLS yielded the same variance as RM-ULA and

a smaller variance than ESPRIT. For higher frequencies, however,

WLS yielded the highest estimation variance. The reason is that at

higher frequencies, the number p of microphone pairs considered by

WLS for estimating the DOAs decreases to avoid spatial aliasing.

Figure 1(b) shows the same results as Fig. 1(a) but for an NLA

where the M = 6 microphones were located at the grid points

[0, 1, 2, 4, 8, 16] × 1 cm. We can see the same trend as in Fig. 1(a),

i. e., the results were unbiased and the estimation variance of the pro-

posed WLS estimator was comparatively high at higher frequencies.

As in Fig. 1(a), the reason for the higher variance is the reduced

number of considered microphone pairs at higher frequencies.
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Fig. 2. Runtime of the different DOA estimators measured in MAT-

LAB (values normalized w. r. t. the runtime of WLS)

The performance of the different DOA estimators is studied in

Fig. 1(c) for different SNRs. We were considering a ULA with

M = 6 microphones with spacing r = 3.2 cm, i. e., the same ar-

ray as in Fig. 1(a). The DOA of the plane wave was chosen ran-

domly as in the experiment before. The frequency was f = 1.7 kHz
for which the WLS estimator was effectively using p = 9 micro-

phone pairs (out of B = 15 possible pairs). We can see that for all

DOA estimators, the mean error ǫ(k, n) was increasing towards low

SNRs. The WLS estimator was slightly less accurate than ESPRIT

and RM-ULA at low SNRs. In terms of estimation variance, the pro-

posed WLS estimator performed similar compared to the other esti-

mators for medium and higher SNRs.

Finally, Fig. 2(a) and 2(b) visualize the computational complex-

ity of the different DOA estimators. The plots show the runtime of

the estimators in MATLAB. All runtimes were normalized w. r. t. the

runtime of the WLS estimator. Note that the runtime was measured

after estimating the signal PSD matrix Φx(k, n) (which is used by

all studied DOA estimators) until cos ϕ̂(k, n) was found. Figure 2(a)

shows the runtime for a ULA as a function of the microphone num-

ber M . The microphone spacing was r = 3.2 cm and we were con-

sidering the frequency f = 500Hz where the WLS estimator made

use of all microphone pairs. The plot shows that both ESPRIT and

RM-ULA were significantly more complex than the proposed WLS

estimator. For example for M = 12, the runtime of ESPRIT was 10

times larger compared to WLS, while the runtime for RM-ULA was

50 times as large. Figure 2(b) shows the runtimes for an NLA with

M = 3 microphones. Here, the position of the center microphone

was varied and the x-axis of the plot shows the ratio d between the

smallest microphone spacing an the array size. For d = 0.5, we

obtain a ULA. For d < 0.5 we have an NLA. In this case, the ef-

fective number of microphones considered by RM-NLA significantly

increases leading to a higher runtime. In contrast, for WLS the run-

time is independent of d.

6. CONCLUSIONS

We have proposed a narrowband DOA estimator with significantly

lower computational complexity compared to SOA approaches such

as ESPRIT or root-MUSIC. The estimator can be applied to almost

any array geometry and determines the DOA based on the phase dif-

ferences between the available microphone pairs using a weighted

least-squares approach. The spatial aliasing frequency is determined

by the smallest microphone pairs. At low and medium frequency, the

proposed estimator provides a similar performance as the SOA ap-

proaches. At higher frequencies, the estimation variance of the pro-

posed approach is comparatively higher since specific microphone

pairs are excluded from the estimation to avoid spatial aliasing.
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