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ABSTRACT

This paper derives an analytical solution to convert sound field rep-
resentation from the angular spectrum to the circular harmonics ex-
pansion. A sound field is decomposed to plane waves by the spatial
Fourier transform and represented by the angular spectrum. A plane
wave is also described by the circular harmonics expansion. In the
proposed formulation, these two representations are integrated and a
sound field can be represented by the circular harmonics expansion
with the angular spectrum coefficients. For actual implementations,
the driving function of a circular sound source for 2.5D higher order
Ambisonics is analytically derived from a sound field described by
the angular spectrum. The results of the computer simulations show
that the proposed method with a circular loudspeaker array can re-
produce a sound field recorded by a linear microphone array with
appropriate accuracy around the center of the circular array.

Index Terms— Angular spectrum, circular harmonics, spherical
harmonics, sound field reproduction, Ambisonics

1. INTRODUCTION

Sound field synthesis is an important acoustic communication tech-
nique and several methods have been investigated in the last decades.

Higher order Ambisonics (HOA) [1–7] has been investigated for
a sound field synthesis technique which can synthesize sound waves
coming from all directions. In HOA, spherical and circular micro-
phone arrays [8–10] are introduced to record sound fields and spher-
ical and circular loudspeaker arrays are used in reproduction stage.
A sound field in HOA is described by the spherical and cylindri-
cal harmonics expansions which are derived from the spatial Fourier
transform in spherical and cylindrical coordinates [11].

For synthesizing sound waves from a half space, wave field syn-
thesis (WFS) [12–15] and spectral division method (SDM) [6, 16–
18] have been proposed. In WFS and SDM, planar and linear ar-
rays of microphones and loudspeakers [15,17,18] are introduced for
sound field recording and reproduction, respectively. A sound field
in SDM is described by the angular spectrum which is derived from
the spatial Fourier transform in Cartesian coordinates [11].

Since these methods provide analytical solutions based on the
spatial Fourier transform, sound field representations should be
the same formats between recording and reproduction stages. For
this reason, in these methods, the configurations of receivers and
secondary sources should be spherical/circular and planar/linear
arrangements. In HOA, several decoding methods for hemispher-
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ical [19], multiple circular [20] and irregular [21, 22] loudspeaker
layouts have been investigated.

In contrast, there is no representation consistency between
recording and reproduction stages in pressure-matching based least
squares (LS) [23–26], lasso [27] and matching pursuit [28] ap-
proaches. An HOA encoding method with LS based plane wave
decomposition for irregular microphone arrays also has been pro-
posed [29]. These numerical approaches, however, are quite unstable
because the acoustic inverse problem is very ill-conditioned [11,30].

For these reasons, it is highly important to improve the flexibility
of analytical approaches for sound field recording and reproduction.
An analytical approach for WFS with truncated linear loudspeaker
arrays to reproduce a sound field described by the spherical harmon-
ics expansion coefficients has been provided [31]. For sound field
recording by using spherical and circular microphone arrays, an an-
alytical method of converting between cylindrical and spherical har-
monics representations of sound fields has been proposed [32].

This paper provides an analytical solution for converting sound
field representation from the angular spectrum to the circular har-
monics expansion. The proposed formulation enables a sound field
captured by a linear microphone array to be reproduced by a circular
loudspeaker array based on HOA.

For actual implementations, sound field reproduction systems
are frequently simplified to be reproduced in the horizontal plane.
Then the secondary sources are arranged on a line or a circle rather
than a plane or a sphere. In actual implementations, monopole
sources instead of line sources are usually employed for secondary
sources. Such approaches are called 2.5D sound field synthe-
sis [3–5, 7, 16, 33]. The driving functions for both 2D and 2.5D
HOA [3–5, 7], therefore, are analytically derived from a sound field
described by the angular spectrum.

2. CONVERTING SOUND FIELD REPRESENTATION
FROM ANGULAR SPECTRUM TO CIRCULAR

HARMONICS EXPANSION

Spherical coordinates relative to Cartesian coordinates for both the
spatial and wavenumber k(= ω/c) domains are defined in Fig. 1(a)
and (b), respectively. ω = 2πf is the angular frequency, f denotes
the temporal frequency and c is the speed of sound.

Assuming that all sound waves are come from a half space y < 0
on the x-y plane (z = kz = 0 and θ = θk = π/2). In this case, the
trace wavenumber in the y direction is ky =

√
k2 − k2

x ≥ 0 and a
sound field P (x, y, ω) is then represented as [11, 16]

P (x, y, ω) =
1

2π

∫ ∞
−∞

P̃ (kx, ω)e−j
√
k2−k2xye−jkxxdkx, (1)
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Fig. 1. Definition of spherical coordinates relative to Cartesian co-
ordinates. (a): spatial domain and (b): wavenumber domain.

where P̃ (kx, ω) is the angular spectrum. (1) indicates that a sound
field is decomposed to each plane wave propagating to φk with each
weight coefficient P̃ (kx, ω). When a far field is assumed, P (x, y, ω)
only contains the propagation wave components [11] and (1) can be
represented as

P (x, y, ω) ' 1

2π

∫ k

−k
P̃ (kx, ω)e−j

√
k2−k2xye−jkxxdkx. (2)

From Fig. 1, P (x, y, ω) is expressed as a sum of plane waves prop-
agating to the direction φk from π to 0 with the weight coefficients
P̃ (kx, ω).

For converting the representation of (2) from the angular spec-
trum to the circular harmonics expansion, the coordinate system of
(2) is transformed from Cartesian coordinates to cylindrical coordi-
nates, and represented as

P (r, φ, ω) =
1

2π

∫ 0

π

P̃ (φk, ω)e−jkr(sin(φ) sin(φk)+cos(φ) cos(φk))

· ((k cos(φk))′ dφk

=
k

2π

∫ π

0

P̃ (φk, ω)e−jkr cos(φ−φk) sin(φk)dφk, (3)

where x = r cos(φ), y = r sin(φ), kx = k cos(φk) and the integra-
tion by substitution dkx → dφk is applied.

At the same time, a plane wave propagating to the direction φk is
also represented by the circular harmonics expansion [11] and given
as

e−jkr cos(φ−φk) =

∞∑
m=−∞

(−j)mJm(kr)ejm(φ−φk), (4)

where Jm is the m-th order Bessel function. From (3) and (4), the
circular harmonics representation of P (r, φ, ω) is analytically ob-
tained as

P̊2D,m(r, ω)

=
k(−j)mJm(kr)

2π

∫ π

0

P̃ (φk, ω) sin(φk)e−jmφkdφk. (5)

To derive the driving function of 2.5D HOA in the next session,
the 2.5D spherical harmonics expansion of a plane wave [3,4] is also

introduced as

e−jkr cos(φ−φk)

=

∞∑
m=−∞

∞∑
n=|m|

jn(kr) 4π(−j)nY mn (π/2, φk)∗︸ ︷︷ ︸
P̌m
n (φk,ω)

Y mn (π/2, φ),

(6)

where jn and Y mn are the n-th order spherical Bessel function and
the m-th order spherical harmonics of the n-th degree [11], respec-
tively. From (3) and (6), the 2.5D spherical harmonics representation
of P (r, φ, ω) is also analytically derived as

P̊2.5D,m(r, ω) =
k

2π

∫ π

0

P̃ (φk, ω)Ψ̊m(r, φk, ω) sin(φk)dφk,

(7)

where

Ψ̊m(r, φk, ω)

=

∞∑
n=|m|

(−j)njn(kr)(2n+ 1)
(n−m)!

(n+m)!
Pmn (0)2e−jmφk , (8)

and Pmn is the m-th order associated Legendre polynomial of the
n-th degree [11].

As a result, a sound field described by the angular spectrum can
be represented by the circular harmonics expansion with the angular
spectrum coefficients as (5) and (7).

3. 2.5D HOA FOR A SOUND FIELD DESCRIBED BY
ANGULAR SPECTRUM COEFFICIENTS

3.1. Analytical formulation

By using the 2D circular and 2.5D spherical harmonics expansion
coefficients of a sound field derived in (5) and (7), the driving func-
tions of 2D and 2.5D HOA are analytically derived in this section.

The angular spectrum representation of a sound field can be
obtained by a continuous linear receiver. When the receiver is lo-
cated along with the x-axis, the recorded sound pressure P (x, 0, ω)
is transformed to the angular spectrum coefficients by the spatial
Fourier transform [11] along with x and given as

P̃ (φk, ω) = P̃ (kx, ω) =

∫ ∞
−∞

P (x, 0, ω)ejkxxdx

=

∫ ∞
−∞

P (x, 0, ω)ejk cos(φk)xdx. (9)

A sound field synthesized by a continuous circular sound source
distribution with radius r0 centered at the origin on the x-y plane is
given as

P (r, φ, ω) =

∫ 2π

0

D(r0, ω)G(r, r0, ω)r0dφ0, (10)

where G(r, r0, ω) is the transfer function from a sound source po-
sition r0 to a receiver position r. Under the free-field assumption,
G(r, r0, ω) is the two-dimensional free-field Green’s function for
2D HOA and the three-dimensional free-field Green’s function given
as

G3D(r, r0, ω) =
e−jk|r−r0|

4π|r − r0|
, (11)
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(a) original sound field
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(b) reproduced sound field
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(c) reproduction error E(r) defined in (18)
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Fig. 2. Results of proposed 2.5D HOA reproduction of sound field
recorded by linear array of 64 microphones. White circles along with
x-axis are 64 microphones and white crosses are 64 loudspeakers.

for 2.5D HOA, respectively [11].
Just as in [3, 4], when the spatial Fourier series expansion [11]

is applied to (10), the circular convolution theorem holds and the
driving function of a circular sound source is directly derived as

D̊m(r0, r, ω) =
P̊m(r, ω)

2πr0G̊m(r, r0, ω)
. (12)

In this case, the reproduction area is assumed to be inside a cir-
cular source and r < r0 is considered.

In 2D HOA,

G̊2D(r < r0, ω) = − j
4
Jm(kr)H(2)

m (kr0), (13)

derived in [11] and the driving function of 2D HOA is analytically
derived from (5), (12) and (13) as

D̊2D,m(r0, ω)

=
k(−j)m+1

π2r0H
(2)
m (kr0)

∫ π

0

P̃ (φk, ω) sin(φk)e−jmφkdφk, (14)

z = 0 [m]

[dB]-2 -1 0 1 2

x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
[m

]

-25

-20

-15

-10

-5

0

f = 500 Hz

z = 0 [m]

[dB]-2 -1 0 1 2

x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
[m

]

-25

-20

-15

-10

-5

0

f = 3 kHz

Fig. 3. Synthesis error E(r) defined in (18) of ideal point source
synthesis by conventional 2.5D HOA using circular array of 64 loud-
speakers.
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Fig. 4. Reproduction error E(r) defined in (18) of conventional
LS based reproduction of sound field recorded by linear array of 64
microphones using semicircular array of 32 loudspeakers.

where H(2)
m is the m-th order Hankel function of the second kind.

In (14), Jm(kr) is cancelled and the driving function of 2D HOA is
independent of r.

Compared to 2D HOA, on the other hand, the driving function
of 2.5D HOA is dependent on r [3, 4]. In [3, 4], for avoiding forbid-
den frequencies where jn(kr) = 0 [34], r is set to 0 by using the
de l’Hospital’s rule and the driving function of 2.5D HOA for r = 0
is analytically derived as

D̊2.5D,m(r = 0, r0, ω) =
1

2πr0
·

P̌m|m|(ω)

−jkh(2)

|m|(kr0)Y m|m|(π/2, 0)∗
,

(15)

where h(2)
n denotes the n-th order spherical Hankel function of the

second kind [11].
Finally, by integrating (3), (6) and (15), the driving function of

the proposed 2.5D HOA is analytically derived as

D̊2.5D,m(r0, ω)

=
1

2πr0
· 1

−jkh(2)

|m|(kr0)Y m|m|(π/2, 0)∗

· k
2π

∫ π

0

P̃ (φk, ω)4π(−j)|m|Y m|m|(π/2, φk)∗ sin(φk)dφk

=
(−j)|m|−1

πr0h
(2)

|m|(kr0)

∫ π

0

P̃ (φk, ω) sin(φk)e−jmφkdφk. (16)
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3.2. Actual implementation

For an actual implementation, a circular loudspeaker array instead
of a continuous circular source is used and (16) must be discretized.
When the number of loudspeakers is Lsp, the order m of the spatial
Fourier series in (16) can be calculated up to M = b(Lsp − 1)/2c,
where b·c is the floor function. Finally, the driving signal of each
loudspeaker at φl in the temporal frequency domain is obtained as

D(r0, φl, ω) =

M∑
m=−M

D̊m(r0, ω)ejmφl , l = 1, 2, · · ·Lsp.

(17)

4. COMPUTER SIMULATIONS

Computer simulations were performed to evaluate the proposed 2.5D
HOA for a sound field recorded by a linear microphone array.

In all the simulations, a three-dimensional free field was as-
sumed. The speed of sound c was 343.36 m/s. A circular loud-
speaker array with radius r0 = 2.0 m was centered at the origin
and located on the x-y plane. The number of loudspeakers Lsp

was 64. The sound pressures produced by a point source located at
xs = [1, −5, 0]T were recorded by a linear array ofLmic = 64 mi-
crophones centered at the origin and along with the x-axis as shown
in Fig. 2(a). The distance between the adjacent microphones of the
linear array was ∆x = 0.05 m and the length of the array was 3.2 m.
The spatial Nyquist frequency of the linear array was about 3.4 kHz.

In the proposed method, the recorded sound field was trans-
formed to the angular spectrum coefficients by the discrete Fourier
transform as the discretized and truncated representation of (9)
where dx was discretized as ∆x and the infinite integral was trun-
cated as−Lmic∆x/2 ≤ x ≤ Lmic∆x/2. The driving signals of the
circular loudspeaker array were also numerically calculated from
the discretized representation of (16) where dφk was equiangularly
discretized as ∆φk = π/Lmic and (17) with M = 31. The repro-
duced sound field was calculated from the discretized representation
of (10).

To estimate the reproduced sound field, the reproduction error at
position r was defined as

E(r, ω) = 10 log10

|Porg(r, ω)− Psyn(r, ω)|2

|Porg(r, ω)|2 , (18)

where Porg(r, ω) and Psyn(r, ω) were the original and reproduced
sound pressures at position r, respectively.

The results of the proposed method were compared with that
of ideal point source synthesis by the conventional 2.5D HOA [3,
4] as a reference and the conventional pressure-matching based LS
method [23, 24].

In ideal point source synthesis, the driving signals for synthe-
sizing a sound field radiated from a point source located at rs =
[rs, θs, φs]

T were calculated from (15) where

P̌m|m|(rs, ω) = −jkh(2)

|m|(krs)Y
m
|m|(θs, φs)

∗, (19)

derived in [4] was introduced.
When a sound field recorded by a linear microphone array is re-

produced by the LS method using a circular loudspeaker array inside
the circle, it is obvious that only the semicircular portion is available
for not only matching the sound pressures at the control points but
also reproducing the wave front in the circle. In the simulations,
a semicircular array of 32 loudspeakers was then used as shown in
Fig. 4.
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Fig. 5. Results of averaged reproduction error within r ≤ 0.5 m
for (a) ideal point source synthesis using circular array of 64 loud-
speakers (reference), (b) LS method using semicircular array of 32
loudspeakers, and (c) proposed method using circular array of 64
loudspeakers.

Fig. 2 shows the results of the reproduced sound field and the
reproduction error by the proposed method at f = 500 and 3000 Hz
with the original sound field. Figs. 3 and 4 also show the results of
the reproduction error by ideal point source synthesis and the con-
ventional LS method, respectively. In addition, the results of the
averaged reproduction error

∫
r≤0.5

E(r, ω)dr was also calculated
up to f = 4 kHz and plotted in Fig. 5.

These results suggest that the conventional LS method can only
control sound field at low frequencies because only 32 loudspeak-
ers were used and the spatial Nyquist frequency of the LS method
is about 1.7 kHz which corresponds to half as much as c/(2∆x) ≈
3.4 kHz. The mode-matching based 2.5D HOA including the pro-
posed method, on the other hand, can control sound field around the
center of the array over a wide frequency range. Compared with the
results of ideal point source synthesis as a reference, the proposed
method can reproduce a sound field recorded by a linear microphone
array with appropriate accuracy. The reproduction accuracy of the
proposed method is slightly degraded because of the discretization
of (9) and (16) and the truncation of (9). Detailed analysis and dis-
cussion are required as future work.

Consequently, the proposed analytical formulation is effective
for HOA based synthesis of a sound field described by the angular
spectrum coefficients.

5. CONCLUSION

This paper proposed an analytical method to convert sound field rep-
resentation from the angular spectrum to the circular harmonics ex-
pansion. In the proposed method, these two representations are inte-
grated and a sound field can be represented by the circular harmonics
expansion with the angular spectrum coefficients. The driving func-
tions of a circular sound source for both 2D and 2.5D HOA were an-
alytically derived from a sound field described by the angular spec-
trum. The results of the computer simulations with 2.5D HOA using
a circular loudspeaker array showed that the proposed formulation
can reproduce a sound field recorded by a linear microphone array
with appropriate accuracy around the center of the circular array.
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