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ABSTRACT

Methods are available for simultaneous localization of multiple (un-
known) audio sources using microphone arrays. Typical algorithms
aim at localizing all active sources. They moreover require that the
number of sources is known and is less than or equal the number
of microphones. This constraint cannot be satisfied in many real-
life situations and noisy environments. We present an algorithm for
localizing an audio source with known statistics in a multi-source en-
vironment. The proposed method circumvents the mentioned prob-
lems by using a phase-preserving signal extraction method on the
input signal. A binary mask is estimated and used to retain only
the information of the target source in the original microphone sig-
nals. The masked signals are fed to a modified version of a con-
ventional localization algorithm, which now localizes only the target
source. Experimental results obtained from real recordings show that
the proposed method can successfully detect and localize the target
source.

Index Terms— Sound Source Localization, DOA, NMEF,
Speaker Recognition

1. INTRODUCTION

Sound source localization is commonly done using microphone ar-
ray(s), and there are many high-accuracy algorithms which can lo-
calize multiple simultaneously active sources, typically, done either
by an estimation of either Time Difference Of Arrival (TDOA) or
Direction Of Arrival (DOA). For DOA estimation, typically, sub-
space approaches are applied, such as MUItiple SIgnal Classification
(MUSIC) [1], Estimation of Signal Parameter via Rotational Invari-
ance Technique (ESPRIT) [2]. To cope with axis-symmetric array
geometries, several algorithms have been proposed such as Eigen-
beam Processing [3]. These are approaches that extend the subspace
approaches to be applied in suitable transform-domains. In TDOA-
based localization, multi-channel filtering can be used to estimate
the time difference. Prominent examples for TDOA estimation are
the generalized cross-correlation (GCC) method [4], adaptive eigen-
value decomposition (AED) [5], and TRINICON [6]. In order to
improve the robustness of the GCC method, a weighting scheme of
the GCC functions was proposed. Maximum likelihood estimation
of the weights has been considered in the presence of uncorrelated
noise, while the phase transform is an efficient and reliable approach
to overcome effect of reverberation [7, 8]. Further advancements
rely on identification of the speaker-microphone acoustic channel
for reverberant speech localization [9, 10]. Other strategies have
been sought for multiple-source localization and tracking, such as
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in [11]. A related scenario is a reverberant environment with back-
ground noise, where a Minimum Variance Distortionless Response
(MVDR) beamformer can be used to localize the source and enhance
the signal [12, 13].

1.1. Related work

To problem we address in this work is to detect and localize a spec-
ified source with known statistics, for example for forensic applica-
tions, where training data are available for a speaker, and the goal
is to detect and localize the speaker in a crowded environment. For
multi-source localization, the framework of TRINICON [6, 14] can
be used. However, in addition to the requirement of having less
sources to be localized than microphones it doesn’t offer a method
to distinguish the localized sources. In all briefly reviewed algo-
rithms so far, the target is to localize all active sound sources re-
gardless whether it is of interest or no. This fact, in combination
with the typical limitation to have less or equal active sources than
microphones makes sound localization in public spaces rather chal-
lenging. Approaches to cope with the limitation of the number of
sources such as [15] generally require to learn the acoustic environ-
ment which is inapplicable in the scenario of a public space where
the acoustic properties of the environment can change drastically in
uncontrolled manner. A verified speaker localization method is pro-
posed in [16]. This technique relies on recovery of the harmonics of
a desired speech signal in noisy and reverberant condition. In [17], a
related problem is addressed where a noise-free version of the target
signal is available. The system presented in [18] addresses the prob-
lem of unsupervised speech extraction and localization. In [19], a
spectral mask was estimated with a deep neural network, as prepro-
cessing to a localization algorithm to reduce the noise. In general,
source extraction methods are not sensitive in phase separation, such
as [20], which delivers good extraction in source spectrum magni-
tude, but the phase is different to the original. As both DOA or
TDOA algorithms are very sensitive in phase differences between
the channels, using such sound source extraction method as prepro-
cessing for localization shouldn’t work if the phase is not guaranteed.

1.2. Contribution

The idea of the proposed method is to use blind source separation,
such as Non-negative Matrix Factorization (NMF), as a preprocess-
ing step before the actual localization algorithm. Monaural source
separation is applied to the mixture of all microphone signals from
the array. From the separated signals, the target source (a speaker,
in our case), is identified using simple speaker identification tech-
niques. A binary mask is estimated using the separated signals and
the identification result, in order to retain only the information of the
target source in the original microphone signals. The filtered sig-
nals are processed with the ESPRIT localization algorithm, which is
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Fig. 1. System overview

subject to a small modification, such that only the target source is lo-
calized. Experiments were performed with real recordings, and the
results show that the proposed method successfully manages to lo-
calize only the target source, while the other sources are suppressed.

2. PROPOSED APPROACH

The overview of our approach is shown in Fig. 1. In an offline part,
speaker models of potential target speakers are trained from a train-
ing database. We model the speaker signals with Gaussian Mixture
Models (GMMs) using MFCCs as features. The online part of the
system starts with a short-time Fourier transform of all microphone
channels. Single-channel blind source separation using NMF is ap-
plied to the magnitude spectrogram mixture (simple averaging) of
all channels. The separated signals are classified using the trained
models in order to find target speaker among them. Then, the multi-
channel microphone signals are multiplied with a binary mask which
is derived from the results of source separation and speaker identifi-
cation. The masked signals are used as input to a modified version of
ESPRIT localization, which results in a DOA estimate for the target
speaker.

It is assumed that the number of sources is known, although, due
to the source separation approach, this number is not critical for the
performance. While the number of sources is generally not limited,
in our experiments, we tested the method with two and three active
sources from different DOAs.

2.1. Target source training

Since we want to localize an audio source with known statistics,
these statistics need to be learned in an offline training phase. A
more difficult, but also more useful scenario is when both the target
source and the other sources are different persons speaking. Thus, in
this work, we focus only on speech sources and use speaker recog-
nition methods to train and identify the target speakers.

An established method in speaker recognition is to use MFCCs
as features and model these with GMMs [21]. In our scenario, the
speaker recognition task is rather simple — identifying one specified
target speaker from only a few sources, and therefore we use this
approach.

2.2. Non-negative matrix factorization

In the localization step of our method, we first convert each channel
of a signal into a magnitude matrix N x F' in time-frequency do-
main by STFT, where N is the length of Discrete Fourier Transform
(DFT), F'is the number of frames. We define the spectrogram of the
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Fig. 2. Details of the source separation and basis selection process

pm channel as V,, and the averaged spectrogram as V. We factorize
the matrix V using NMF [22]. The NMF factorizes the nonnegative
matrix V into two nonnegative matrices W and H,

V = WH. €8
Assume V is an N x F' matrix, the dimension of the factorization
is r. After the factorization, W is an [N X r basis matrix, and H is
an r X F activation matrix. We use the implementation described
in [22]. To approximate the factorization in Eq. (1), the method de-
fines a cost function to minimize the Kullback-Leibler divergence
between V and WH:

A,
D(A[|B) := Y~ Aj;log
4,7

ij
iJ

B,

— A +Byj 2)
where ¢, j denote the i-th row and j-th column of the matrices A
and B. The dimension r of this factorization is equal to the number
of active sources Q. The rows of the factorized matrix W are the
spectral features of each source, and the columns of matrix H are
their activations. W and H are computed with iterative update rules,
which ensure that the distance D is minimized. We suggest using
the multiplicative update rules for divergence distance, which are
proposed in [22].

The details of the basis selection step from Fig. 1 are shown in
Fig. 2. MFCC features are extracted for each of the separated bases,
and, using the trained model of the target speaker, the basis corre-
sponding to the target speaker s is found with maximum likelihood
classification. As each basis maps to an activation vector, we choose
the activation vector that belongs to our chosen basis. We take W
(column vector) and H (row vector) as the chosen basis and activa-
tion vector.

2.3. Binary mask

The signal extraction step of our system is performed on a monaural
mixture of all microphone signals. In this section, we describe an
approach to estimate a binary mask that is applied on the original
microphone signals. The main purpose is to find when and at which
frequencies the specified target sound source is active, so we choose
elements from the spectrogram based on the chosen basis and acti-
vations, using a binary mask.

First, we define the reconstruction of the target source as ¥,
v =W, x Hg, (3)

which is an N X F' matrix, in time-frequency domain, and its entry
W;; in 4, row and ju column denotes the energy of the basis in 4y
frequency band and jx time frame.



The binary mask is determined as
‘/1/3 _ {1 W > Vi,

0 otherwise,

where V' denotes mask matrix of the selection result and Vi/j de-
notes its entry in i, row and jy, column. The variable 7 (0 < 7 < 1)
is a threshold. We suggest setting 7 between 0.3 and 0.5. In block-
based processing, such as real-time processing, only a few frames
are analyzed together. The choice of 7 > 0.3 guarantees that there
is enough information for localization. It is not necessary for the
specified source to be predominant (the localizaton method is intro-
duced below), and therefore 7 is not set higher than 0.5, otherwise
there would be too much useful information wasted. The selected
spectrogram in the py channel is 'V,

C)

V,=V,oV,
where o denotes Schur Product.

There are two reasons we use binary mask instead of soft mask
in Eq. (4). First, we factorize the averaged spectrogram, and the
energy of the specified source is not uniformly distributed in each
channel. Therefore we can’t apply the same soft mask to all chan-
nels. Second, applying a soft mask or a Wiener filter, e.g. as pro-
posed in [23, 24], corresponds to an amplitude modification. This
leaves the phase unchanged and thus does not improve the eigen-
value energy distribution in the subsequent localization step.

&)

2.4. DOA estimation based on time-frequency information

We prefer to use ESPRIT as the DOA estimation algorithm if the
microphone array fits its requirement. The original algorithm is in-
troduced in [2]. It was designed for narrow-band signals and can
estimate DOA from the multi-channel signal matrix directly in time
domain. Our signals are broadband speech signals, and therefore we
have to transform the signal into frequency domain and run ESPRIT
in each narrow band. We use short-time Fourier analysis of overlap-
ping frames (parametrisation details are given in Section 4.2). The
covariance matrix Ry, is computed for narrow bands in frequency
domain,

Ry, =V}, -V, (6)

where V}i denotes the selected narrow band spectrogram with all
the channels together, defined as

V;‘i = [Vllfri""’V;:’fi]T’ Q)

where f; denotes the i, frequency band, and P denotes the number
of microphones in the array.

In the conventional ESPRIT algorithm, the second step is to de-
compose the covariance matrix Ry, into its eigenvalues and eigen-
vectors,

R;,U =AU, ®)
where U denotes eigenvector matrix, and A denotes the eigen-
value diagonal matrix. Then, the eigenvectors with first highest Q
(source number) eigenvalues are taken into further processing. In
our method, however, as we use a threshold parameter 7 for the
binary mask, the eigenvector corresponding to the specified sound
source might not always have the largest eigenvalue. Thus we take
only one eigenvector with the highest relationship to the specified
sound source, as we describe in the following. We first estimate an
SNR in this narrow band signal,

F
O :Z Vi’
i=1 Y

®
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where ¢, denotes the averaged SNR through frames in the 4, fre-
quency band of the averaged spectrogram V. The SNR is defined
as the ratio of the energy of the specified speaker to the full energy.
Then we compute the energy E,, in the my, eigenvector,

Em = Amml,m=1,...,P.

The sum of the eigenvectors energy is F,

P
E= g En
m=1
E’V?'L

and 6;,1 2 is the energy ratio for the mg eigenvector: The eigen-
vector U is chosen by the eigenvalue which has the similar energy
ratio (6,,,) to the SNR 6y,

U, = {Um’mwiln\dn —§fi\}.

With the chosen Uy, the subsequent steps in ESPRIT are exactly the
same as in [2], and we achieve an estimated DOA for each frequency
band. In order to obtain one localization result per frame, the results
over all frequencies are taken and a peak detection method is applied
on the histogram.

10)

an

12)

3. EVALUATION

3.1. Recordings

The proposed method is evaluated with real recordings. Recordings
were taken in an acoustically treated room with the dimensions 5m x
10m x 3m. The room has sound absorbing material hanging on each
wall to make sure the reverberation time RTs attains values between
0.5and 0.7 s.

The linear microphone array consists of five uniformly dis-
tributed AKG C562 CM microphones (4 cm distance from each
other). We recorded samples with two or three speakers, where
one of them is the specified target sound source. The sources were
placed at different angles, at a distance of 3 m from the microphone
array.

Speech samples were taken from the TIMIT database [25], with
leading and trailing silence cut off. Target source and interference
sources were always taken from different speakers, and multiple
samples were connected to have 10 s long recordings. For train-
ing the target speaker model, 35 s recordings of the specified target
speaker were used (clean and disjunct from the test recordings).

3.2. Parametrisation

During the localization phase, the recording is segmented into blocks
with a length of 1 s, with a hop size of 0.25 s. Localization results
are computed for each of these blocks. If the length of the blocks is
set too small, the quality of NMF in blind source separation will be
low. If it is to too large, the basis would be too general to describe
the spectrum in each frame.

In each block, the STFT is computed for smaller frames, with
a length of 4096 samples and a hop size of 2048 samples, using
Hann windows. The sampling rate is 44 100 Hz. NMF is performed
on magnitude spectrograms, and the number of bases r is set to the
number of active sources. The number of iterations is set to 200
(normally it converges faster than this). The threshold 7 for the mask
estimation is set to 7 = 0.4.

For speaker modelling, we use the standard configuration of 13
MFCC coefficients in the frequency band of 0-8 000 Hz, together
with delta and delta-delta coefficients, resulting in 39 features per
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block. The window size and hop size are the same as in the STFT
for localization processing. Possible target speakers are modelled
with GMMs with diagonal covariance matrices. We employed 32
mixture components, which represents a good trade-off, considering
a scenario with low amounts of training data and short blocks of
testing data.

3.3. Results

Fig. 3 shows the results for one block of a recording with three active
sources as a normalised histogram of DOA estimates. The proposed
method is compared with the conventional ESPRIT algorithm. The
specified target source is played from 120°, and two other sources
are played from 45° and 80°, respectively. Results for ESPRIT are
represented by the solid line, that we can’t specify our target source’s
DOA from it. The dashed line shows the result of the proposed al-
gorithm. It can be seen that the peak of the target source is clearly
highlighted, while the other two peaks are attenuated. Therefore, the
target source can be found successfully with a simple peak detection
method. Fig. 4 shows the detailed block-wise results in this experi-
ment after peak detection. In general, the proposed method is quite
robust in detecting only the target speaker. Some systematic errors
are made, for example in low-energy regions of the target speaker.
We have done experiments with 3 active sources like the one
shown above, and with 2 active sources, from [45°,90°] and
[60°,90°], where the specified sound source is from 90° in both
cases. Summarized results are shown in table 1. The second row
“DOA error” shows the average DOA error of the proposed method,
suggesting that the DOA results of the proposed method are ro-
bust. In the third row “Tgt detection with spkID”, the average
block-wise accuracy of detecting the correct source is shown, in-
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Source angle 45°80°120° 60°90°  45°90°
DOA error 1.52° 0.43° 0.54°

Tgt detection with spkID 66.7% 84.4% 84.4%
Tgt detection ora. spkID 77.8% 88.9% 86.7%
GMM accuracy 75.6% 86.7% 84.4%

Table 1. Summarised results in terms of DOA error, target detection
with real and oracle speaker identification, and GMM accuracy

5—Tgt. detection ora spkiD
-+GMM accuracy
|=Tgt detection with spkiD

0'5.5 0.6 07 0.8 09 | 1 1.‘1 12
Block size (seconds)

Fig. 5. Results for three sources, depending on the block size

cluding the GMM speaker recognition. Better results are achieved
with only two active sources. In order to analyze the performance
independently of the speaker recognition method, the second last
row shows results using an oracle speaker recognition that doesn’t
make mistakes. For reference, the last row of the table shows the
GMM speaker identification accuracy. Because the NMF does a
very rough unsupervised blind source separation, it leads to a higher
GMM speaker recognition error rate as compared to single source
speaker recognition.

We explored the influence of the block size for the recording
with 3 sources. For the results in Table 1, an analysis block size
of 1 s was used. Results for different block sizes (keeping the hop
size constant at 0.25 s) are shown in Fig. 5. The choice of 1 s de-
livers the best results, while for larger block sizes, the NMF result
becomes inaccurate, and for smaller block sizes, there is not enough
information included for the NMF separation process.

4. CONCLUSIONS

We proposed a method for audio source localization with known
source statistics. The method uses unsupervised source separation as
a preprocessing step to a conventional localization algorithm. From
the separated sources, a specified target source is identified and a
spectral mask is estimated. The original microphone array signals
are processed with this mask and used for source localization. Our
results with real recordings show that the method is successful at
detecting and localizing the target source in a multi-source environ-
ment.

The result of the source separation step is important for both
speaker recognition and localization. Currently we use the averaged
spectrum across all channels as input to the NMF. Using the rela-
tion between channels is a way to improve the quality, such as [26],
which delivers better blind source separation. Since we only take
the magnitude spectrum in the result of BSS, one direction of fu-
ture work is towards a less complex multi-channel NMF version to
improve the accuracy of our algorithm.
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