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ABSTRACT

We propose an infrared (IR) stereo-vision system for estimating the
3D model of the pinna, based on low-cost devices. A commercial IR
calibrated stereo camera is used in conjunction with a structured IR
light projector, to acquire highly textured snapshots of the pinna. A
point cloud is computed for each snapshot by triangulating the stereo
correspondences detected in the acquired IR images. A complete
3D model is computed by aligning and merging the point clouds,
and then creating a polygonal mesh surface. The nominal accuracy
of the proposed system turns to be about 1 mm, which enables an
accurate prediction of the Head Related Transfer Function (HRTF)
through numerical acoustic simulation.

Index Terms— 3D pinna model, HRTF, binaural audio

1. INTRODUCTION

Sound reproduction over headphones has become more and more
popular in the last few years, thanks to the increased availability
of high-quality transducers at a relative low cost. Binaural audio
represents one of the most promising technologies in this scenario,
as it enables 3D sound spatialization using only two reproduction
channels. It is based on the knowledge of the Head Related Trans-
fer Function (HRTF), which represents the acoustic response of any
source in space with respect to the listener’s ears. The HRTF em-
beds information about the response of the listener’s body, which is
mostly determined by the shape of the auricles (pinnae) and by the
reflections produced by the torso, the shoulders and the head. Al-
though the literature is plenty of methods attempting to derive gen-
eral listener-independent acoustic models [1, 2, 3, 4, 5], accurate 3D
sound reproduction is generally possible only when a customized
HRTF is available.

Individual HRTFs are typically measured capturing the sound
in the ear canals by means of a pair of in-ear microphones. One
or more compact loudspeakers are driven with wideband signals to
identify the source-ear acoustic channels, at every frequencies within
the audible range. In order to span all the possible directions, either
the sources or the listener are rotated by means of precision rotating
arms or turntables. To obtain accurate results, measurements must
be carried under anechoic conditions, where the listener is required
to sit still for the entire acquisition session. These practical limi-
tations make the acoustic measurement of the HRTF a “privilege”
for few selected listeners, mainly belonging to the acoustic research
community.

An interesting alternative to acoustic measurements is that of
predicting the HRTF from the knowledge of the 3D model of the
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pinnae and the head of the listener. Techniques based on the Finite
Element Method (FEM), as well on the Boundary Element Method
(BEM), can be used for simulating the source-ear acoustic propaga-
tion to obtain an estimate of the HRTF [6, 7, 8]. Recently, C. Jin
et al released the SYMARE database [9], i.e., a collection of high-
resolution surface meshes of 61 subjects obtained from magnetic res-
onance imaging (MRI) data, along with the measured HRTFs and
their predictions obtained through a Fast Multipole-Boundary Ele-
ment Method (FM-BEM) technique. They showed that the predicted
HRTFs are highly correlated with the measured ones, especially at
frequencies below 10 kHz.

The valuable work in [9] suggests that the acquisition of individ-
valized HRTFs from 3D models could potentially become an afford-
able task, thus paving the way to consumer personalized binaural au-
dio applications. Clearly, the only technical limitation is represented
by the 3D acquisition system. In fact, MRI data provide extremely
accurate models, but turn out to be prohibitive for low-end commer-
cial applications. Systems such as laser-scanners (used for instance
in [10] to acquire the pinna 3D model) are less expensive than MRI,
but not cheap enough to be considered as consumer electronics de-
vices. A practically costless solution, on the other end, would be
that of using simple 2D data (i.e., images) to infer the HRTF. To
this end, authors in [11] investigated the relationship between the
measured HRTF and some anthropometric features extracted from
pinna pictures. Some interesting results were found relatively to the
frontal medial plane, however the intuitions in [11] are still far from
enabling an accurate prediction of the whole HRTF.

In this paper we propose a low-cost alternate solution for acquir-
ing the 3D model of the pinna, using standard low-end devices. In
particular, we adopt an infrared (IR) calibrated stereo camera to ac-
quire pairs of images of the pinna. To enrich the natural texture of the
cartilage, the pinna is illuminated with a structured IR pattern. The
projected pattern increases the number of matching points extracted
from each image pair, which are triangulated to obtain a dense 3D
point cloud for each of the stereo snapshots. The 3D point clouds
are then aligned and merged to obtain a complete 3D model, from
which a surface mesh is finally produced. The experimental results
demonstrate that the resolution of the proposed method is sufficient
for accurately predicting the HRTF through FM-BEM simulation.

The rest of the paper is structured as follows. Section 2 de-
scribes the methodology developed to extract the 3D model of the
pinna, along with the hardware components and the computer vision
algorithms employed to realize the proposed system. In Section 3,
the method is validated from the geometrical standpoint. In Section
4 we present the results of some acoustical simulations, aimed at as-
sessing the effectiveness of the method for HRTF prediction. Some
final considerations are reported in Section 5.
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2. METHODOLOGY AND SYSTEM IMPLEMENTATION

The goal of the proposed system is to build a 3D surface mesh of the
pinna. To this end, we devise a stereo-vision methodology for recov-
ering a 3D model from synchronized IR image pairs. A textured IR
light pattern is projected onto the ear surface, in order to produce a
controlled illumination. This solution turns out to be advantageous
with respect to using standard cameras (i.e., sensible to the light in
the visible range), as it makes the system independent from the nat-
ural illumination conditions. Consequently, it allows the acquisition
in any kind of environment.

The acquisition process can be summarized as follows. After a
preliminary calibration of the stereo camera, we take a stereo snap-
shot of the pinna and we build a point cloud by triangulating the point
correspondences extracted from the two views. In order to cope with
the self-occlusions caused by the complex geometric structure of the
pinna, the procedure is repeated for multiple stereo snapshots taken
at different positions around the head of the subject. The resulting
point clouds are then aligned and merged to form a global cloud,
which is eventually meshed into a connected network of polygons
approximating the 3D surface of the pinna.

In the following we provide details about the proposed method-
ology, describing the algorithms and the hardware components
adopted for the system implementation.

Stereo-image acquisition The core component of the proposed
acquisition system is the LeapMotion® controller', a low-cost com-
mercial device designed for 3D motion and gesture control, origi-
nally thought for virtual reality and gaming applications. To acquire
stereo images of the pinna, we exploit the built-in IR stereo camera,
constituted by a pair of hardware-synchronized IR CMOS sensors
with wide-angled lenses. As the two images of the stereo pair are
acquired simultaneously, the subject is not forced to stay still during
the acquisition.

The LeapMotion® controller is also equipped with three IR leds
for illuminating the scene. Unfortunately, the intense illumination
produced by these leds prevents the observation of the fine veining
structure composing the ear cartilage, which would be useful to de-
tect matching points in the two imaged views. To overcome this
issue, we have chosen to deactivate the leds and replacing them with
an external IR projector. More specifically, we project a structured
IR pattern by means of a Microsoft Kinect® device, with the aim of
producing a high number of point correspondences in the acquired
stereo pair®.

To obtain stereo images suitable for 3D reconstruction, it is nec-
essary to compensate the radial distortion introduced by the wide-
angled lenses. Indeed, distorted stereo images do not satisfy the
geometric constraints arising from ideal rectilinear projection, and
would lead to severely impaired 3D reconstructions. A preliminary
correction is performed by remapping the raw image Ir(z,y) onto
a grid of compensated pixel positions, namely

IU(‘r7y) = IR(fm($7y)7fy(l’yy))7

where the compensation functions f;(z,y) and fy,(x,y) are pro-
vided as lookup tables by the manufacturer. A finer compensation
procedure is then accomplished in the calibration step described in
the next paragraph. An example of undistorted stereo snapshot is
shown in Figure 1.

Ywww . leapmotion.com

Note that the resolution of the depth map produced by the Kinect® is
too low to be used for extracting the 3D model of the pinna.
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Fig. 1: Example of undistorted stereo snapshot.

Stereo-camera calibration To recover 3D metric information
about the imaged object, a calibration of the stereo system is in or-
der. More specifically, we need to determine the camera projection
parameters, along with the mutual pose of the two cameras. This in-
formation is embedded in the camera projection matrices P; and P,
which describe the mapping from 3D world points to 2D points in the
images; and in the fundamental matrix F', which defines the geomet-
ric relationship between the pairs of corresponding points (epipolar
geometry) [12]. To estimate these quantities, we follow a two-step
state-of-the-art calibration procedure [13], using a planar checker-
board as a calibration object with known 3D geometry (12 x 7 black
and white squares of size 25 mm). In a first stage, we obtain inde-
pendent estimates of P; and P;, along with an accurate estimation
of the residual radial distortion parameters, used to apply a finer ra-
dial correction. In a second stage, the epipolar geometry constraints
[12] are exploited to iteratively compute the fundamental matrix F
and refining the camera projection matrices estimates.

Finding stereo correspondences The IR pattern projected onto
the pinna allows us to easily determine the point-to-point correspon-
dences between the two views. After correcting the radial distortion
using the parameters estimated during the calibration stage, points
X; = [x4,1i,1]7 in the left view are matched against points x; =
[£;,v;,1]" in the second view among those lying on the epipolar
line, i.e., satisfying the epipolar constraint x{ Fx; = 0 [12]. More
specifically, we employ a template matching technique acting on the
neighborhood of the tested pixel locations. Matching pairs are se-
lected as those minimizing the Sum of Squared Distances (SSD)
similarity metric.

Point cloud computation The acquisition process consists in
shooting multiple stereo snapshots, changing several times the view-
point for accurately capturing the folds and cavities constituting the
pinna. For each of them, we collect N, pairs of matching points
from the two views, v = 1,...V denoting the index of the snap-
shot. Knowing the camera matrices P; and P ;, the stereo correspon-
dences are triangulated to estimate the 3D locations of the imaged
points. Robust triangulation is achieved through the Direct Linear
Transformation (DLT) algorithm [12]. The resulting 3D points are
then collected to build V' point clouds, defined as

N.
P’u - {Xn,'u nil )

where X, v = (Zn,v; Yn,v, 2n,0) denotes the 3D Cartesian coordi-
nate of the nth point extracted from the vth snapshot.

Point clouds merging As the camera movement around the
pinna is unknown, it follows that the resulting V' point clouds are
referred to different local coordinate systems. A procedure to cor-
rectly merge the point clouds is therefore in order. To this end, we
adopt the Iterative Closest Point (ICP) [14] registration algorithm. It
iteratively searches for the rigid transformation that minimizes the
misalignment of a pair of point clouds. The first point cloud P; is

3Point locations are here expressed in homogeneous coordinates.



selected as a reference, and the ICP algorithms is run on the V' — 1
pairs that include it. The resulting realigned clouds P5 ... Pyj, now
share a common reference system, thus they can be safely merged
into the global point cloud P = P; UP5 U... P}

Surface meshing To obtain a connected model of the pinna,
the global point cloud is finally converted to a surface mesh model.
This task is accomplished through the Poisson meshing algorithm
described in [15], implemented in most of the free 3D modeling soft-
wares. It is worth noticing that a mesh model represents the input
of any FEM/BEM-based algorithms used to predict the HRTF via
acoustic simulation.

3. GEOMETRICAL VALIDATION

In this section we assess the validity of the proposed system from
the geometrical standpoint. We first provide an estimation of the
nominal accuracy of the system, analyzing the results obtained dur-
ing the calibration phase. Then, we analyze the 3D models extracted
acquiring the left pinnae of two different subjects.

3.1. Nominal system accuracy

We are first interested in evaluating the system in a controlled sce-
nario, in order to empirically derive its nominal accuracy. To do so,
we consider the 3D reconstructions of the calibration checkerboard.
In this simple scenario, it is reasonable to assume that no errors are
introduced in finding the point correspondences in the two views,
as the corners of the checkerboard’s squares can be easily detected
through basic image processing techniques (i.e., straight line fitting
and intersection) [16]. Therefore, we assume the 3D reconstruction
error to be merely determined by the resolution of the camera and
the residual (uncompensated) radial distortion.

To infer the accuracy of the system, we analyze the mean
reprojection error [12] of the 3D reconstruction, as follows. Con-
sider a pair of point correspondences x; = [zi,yi,1]” and x; =
[x;,9;,1]%, generated by the 3D point X = [X,Y,Z 1]7, all
expressed in homogeneous coordinates. Let X be the estimate
of X obtained through the DLT method. The reprojections of X
in the two views are given by %; = [&;,9:,1]7 = P;%; and
%; = [&;,95,1]T = P;%;, respectively. The Euclidean distance
between x; (x;) and X; (X;) is called reprojection error.

Averaging the results obtained during the calibration phase (30
snapshots of the checkerboard), we obtained a mean reprojection
error of 0.31 pixel. Following the procedure outlined in Chapter
12.6 of [12], we estimated the uncertainty of the 3D reconstruction.
Assuming the reprojection error to be Gaussian and identically dis-
tributed in the x and y directions in both the views, the maximum re-
construction error equals 1.07 mm; and its mean value is 0.61 mm.

3.2. Accuracy of the extracted 3D pinna models

The proposed methodology has been tested by acquiring the 3D
model of the left pinna of two people (denoted as subjects A and
B throughout the paper). A ground-truth 3D model of the pinnae
was obtained through a ROMER RS2 high-precision laser scanner,
mounted on a 6-DOF absolute positioning arm, whose nominal ac-
curacy is 30 um. The subjects were lying on the right side, on a
rigid table, with their head resting on a pillow. This position facili-
tated them in remaining perfectly still during the scanning operation,
which lasted about 5 minutes per person. Differently, the acquisition
of the pinnae with the proposed technique was accomplished with
the subjects sitting on a chair, as in this case no stillness is required.
20 stereo snapshots were acquired from different viewpoints of the
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Fig. 2: 3D reconstruction error.

two pinnae, keeping the LeapMotion® controller and the Kinect®
projector at a distance of about 30 cm from the subject’s head.

To enable a comparison with the ground-truth, we first realigned
the extracted models with those obtained through the laser scanner,
using the ICP algorithm. Then, for each point X, of the extracted
model,n = 1,2,... N, we computed the 3D reconstruction error as

B(X,) = min X=X,z

g=1,2

where X, g = 1,2,...G, are the points constituting the ground-
truth model. The distribution of the reconstruction error for the two
subjects is shown in Figures 2-a and 2-b, respectively. The error
distribution is almost independent from the subject, and the average
error is below 2mm; the maximum error is 4.47 mm for subject A;
and 5.02 mm for subject B. Notice that, in general, the reconstruc-
tion error is higher than the nominal accuracy of the system reported
in Section 3.1. This is mainly due to the fact that the resolution of the
IR pattern projected by the Kinect® is lower than that of the IR cam-
eras, thus causing a slight worsening in the matching procedure to
find stereo correspondences. Notice also that the regions exhibiting
the highest error correspond to the most occluded parts of the pinna
(e.g., deep cavities). Instead, the principal contours (i.e., helix, an-
tihelix, anterior notch, etc.), which are much more representative of
the shape of the pinna (and reasonably more related to perception)
are reconstructed with higher precision.

4. IMPACT ON HRTF PREDICTION

We now analyze the suitability of the proposed 3D reconstruction
method for predicting the HRTF using acoustic simulation. We do
so following the same approach as in [9], i.e., using the FM-BEM
solver provided by the Coustyx software. To simulate the effect of
the head, the extracted pinna models were manually merged with a
head model, randomly selected from the SYMARE database [9]. In
particular, we removed the original left pinna, which was replaced
with the one extracted through the proposed method. This opera-
tion was repeated for the two subjects, building the meshes for both
the estimated and the ground-truth pinna models. An example is re-
ported in Figure 3, showing the mesh model of subject A, observed
from different viewpoints.

Fig. 3: Different views of the mesh model of subject A.
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Fig. 4: Examples of SRFSs computed for subject B.

We predicted the left HRTF of the two subjects considering 393
source directions. Simulations were limited to the frequency range
20 Hz — 8 kHz, in which most of the localization cues are included
[17]. Notice also that, within this range, a good matching between
the measured HRTF and its prediction is expected [9]. For further
details about the acoustic simulation setup, we refer the reader to
Section II-D in [9]. In Figure 4 we show some examples of spatial
frequency response surfaces (SFRSs), relative to the HRTF predicted
for subject B. More specifically, the SFRS maps the magnitude of
the HRTF for every direction in space (azimuth ¢ and elevation 0),
for a selected frequency. The horizontal plane with respect to the
listener’s head is given by 6 = 0; the median plane is defined for
¢ = 0; the left side is mapped for ¢ > 0° and the right side for ¢ <
0°. The left column in Figure 4 corresponds to the HRTF predicted
from the 3D model extracted with the proposed LeapMotion-based
method; the right column is relative to the HRTF predicted from the
ground-truth 3D model. We notice that, up to 6 kHz, the two 3D
models lead to very similar predictions; at 8 kHz some deviations
are noticeable in the two SRFSs.

In order to objectively quantify the deviations between the
HRTFs we resort to the spectral distortion (SD) metric, widely
accepted in the literature as it gives some insights about spatial
sound perception [18, 19, 11]. Given a predicted HRTF function
H(¢,0, fr), defined on the spatial angular domain (¢, 6) and dis-
cretized at frequencies fx, k = 1,... F, the spectral distortion with
respect to a reference HRTF function H (¢, 0, f) is computed as
(11]

[H(¢,0, fk)|>
SD(¢,0) = 201log dB]j .
@0\ & Z ( 80 (16,0, f0)] )
The resulting SDs from the two subjects, computed in the analyzed

frequency range 20 Hz — 8 kHz, are shown in Figure 5. The spec-
tral distortion turns out to be almost constant, around 2 dB, except
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Fig. 5: Spectral distortion of the predicted HRTFs.

for a few isolated directions around ¢ = —90° where SD > 6 dB.
Averaging the SD over all the spatial directions, we obtained a mean
value of 3.01dB for subject A and 2.98 dB for subject B. Notice
that values of SD below 4 dB generally denote perceptually indistin-
guishable differences between the HRTFs, especially in the horizon-
tal plane [20].

Finally, in Table 1 we report the average and maximum SD for
the two subjects, dividing the frequency axis into sub-bands. We no-
tice that, for frequencies below 5 kHz, the average SD is very low
for both the subjects. Results for subject B are slightly worse as far
as the maximum value is concerned, due to isolated peaks of the SD
function. Above 5 kHz the SD tends to increase. This is not unex-
pected, as the resolution of the 3D mesh acquired with the proposed
technique is much lower than that of the ground-truth model, thus
impacting on the FM-BEM simulation at high frequencies. Never-
theless, the SD still remains acceptable on the average.

Table 1: Average and maximum values of SD, for the two subjects,
at different frequency ranges.

subject A subject B
frequency range | avg. max. | avg. max.
20 Hz - 500 Hz 2.70 2.84 2.85 3.14
1 kHz - 2 kHz 2.23 2.85 2.39 3.49
2kHz - 3 kHz 1.33 3.43 1.65 8.95
3kHz - 4 kHz 0.85 6.69 1.59  12.09
4kHz - 5kHz 1.58 4.06 2.18 9.69
5kHz - 8 kHz 412 1349 | 369 12.61

5. CONCLUSIONS

We proposed a low-cost solution to recover the 3D model of the
pinna, based on state-of-the-art stereo vision techniques. The accu-
racy of the proposed system, although being inherently lower than
that achieved by high-precision scanning devices, is adequate for the
prediction of the HRTF through numerical acoustic simulation. In-
deed, the spectral distortion of the predicted HRTF, measured with
respect to the HRTF computed from laser-scanned pinna models,
turns to be acceptable in a wide frequency range, for most of the
spatial directions.

Besides its cheapness, the proposed system presents several ad-
vantages over MRI or laser scanning devices. At first, it does not
require any particular expertise nor medical qualification to accom-
plish the acquisition. Moreover, the subject is not forced to remain
still during the acquisition process. Keeping these facts in mind, this
work proves the feasibility of a future scenario in which customized
HRTF measurement will be at everyone’s hand.

We are currently working on a deeper testing of the system,
acquiring the model of more subjects and comparing the predicted
HRTFs with their acoustic measurements. We are also planning for-
mal listening tests to provide a perceptual validation of the system.
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