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ABSTRACT

For the music structure segmentation task, one wants to solve two
co-existing but sometimes contradicting problems; find global repet-
itive/homogenous structures and locate accurate local change points.
In this paper we propose two algorithms to address these two prob-
lems. The algorithms can independently or jointly be plugged into
various existing structural segmentation algorithms to improve their
results. One algorithm utilizes the Variable Markov Oracle, a suffix
automaton for multi-variate time series capable of finding repeat-
ing segments, is proposed to obtain a self-similarity matrix which
encodes the global repetitive structure of a music piece. The other
proposed algorithm is an iterative boundary adjustment algorithm re-
fining boundary locations. The algorithms are evaluated against the
Beatles-ISO dataset and achieve comparable performance to state-
of-the-art.

Index Terms— music structure segmentation, Variable Markov
Oracle, self-similarity matrix

1. INTRODUCTION

Automatically recognizing the segmentation of a music piece is not
only a fundamental task in music information retrieval research for
music structure analysis, but also leads to the development of ef-
ficient music content navigation and exploration applications. Re-
views of existing work could be found in [1, 2]. Among various
approaches, the self-similarity matrix (SSM) has been the funda-
mental building block for several existing algorithms. An SSM cap-
tures global repetitive structures containing essential information for
music segmentation. Matrix decomposition of an SSM is widely
adopted in existing work. In [3], non-negative matrix factorization
(NMF) is used to decompose an SSM into basis functions represent-
ing different structural sections. The NMF idea is extended in [4]
with a convexity constraint on the weights during decomposition,
which leads to more stable results. In [5], ordinal linear discrimi-
nant analysis is used to learn feature representations from the sin-
gular value decomposition of the time-lag SSM. Spectral clustering
is used in [6] to obtain low-dimensional repetition representations
from an SSM. Approaches focus on deriving segmentation bound-
aries from an SSM are also popular. In [7], a checkerboard-like ker-
nel is applied along the diagonal of the SSM to obtain a novelty
curve for segmentation boundaries. Structure features are devised
in [8] based on time-lag SSM and segmentation boundaries are in-
ferred from structure features.

Approaches based on matrix decomposition or boundary detec-
tion represents two aspects of music segmentation problem; finding
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global structures and local change points. The two problems also
corresponds to the categorization of repetition/homogeneous- and
novelty-based approach proposed in [2]. In this work, we propose
algorithms to address the two aforementioned problems. The two al-
gorithms can independently or jointly be plugged into various exist-
ing segmentation algorithms. For finding global repetitive structures,
we present a novel method for obtaining SSMs. The method is based
on Variable Markov Oracle (VMO) [9], a suffix automaton capable
of symbolizing multi-variate time-series and keeping track of its re-
peated motifs. Since repeating sub-sequences are essential in music
structure analysis, it is natural to experiment with the SSM obtained
from the VMO (VMO-SSM) in the music structure segmentation
task instead of the SSMs obtained with traditional approaches. Con-
ventionally, an SSM is obtained by exhaustively calculating frame-
by-frame pairwise distances. For music segmentation tasks, a binary
SSM (recurrence plot) is often desired [5, 6, 8]. Nearest-neighbor
criterion is often used to obtain a binary SSM from an SSM, but
the number of nearest neighbors chosen for each frame is often de-
termined heuristically. The VMO-SSM is directly in binary form
and the reduction from continuous distance values to binary values
is done implicitly according to information dynamics [10, 11]. For
improving the boundary detection accuracy, we propose an iterative
boundary adjustment algorithm to post-process the results from seg-
mentation algorithms. The proposed algorithms are evaluated in the
music structure segmentation task with the Beatles ISO dataset [12]
against existing approaches based on SSMs.

2. SSM FROM VARIABLE MARKOV ORACLE

To obtain a binary SSM, the common approach is to apply k-nearest
neighbor thresholding for each frame. Using k-nearest neighbor
thresholding gains scale-invariance on the result binary SSM. With
the VMO-SSM, instead of obtaining scale-invariance, the emphasis
is on tracing similar trajectories in the metric space drawn by the
time series.

The VMO is a suffix automaton capable of reducing a multi-
variate time series down to a symbolic sequence but still retains re-
peating sub-sequences as shown in [9]. The VMO stores the infor-
mation regarding repeating sub-sequences within a time series via
suffix links. For each observation at time t of the time series with
length T indexed by a VMO, a suffix link, sfx[t] = k, is created
pointing back in time k to where the longest repeated suffix hap-
pened. The suffix links not only contain the information regarding
repeating sub-sequences, but also imply a frame-to-frame equiva-
lency between t and k given sfx[t] = k that leads to symbolization
of the time-series. Given the symbolized sequence S by a VMO, a
binary SSM (VMO-SSM), R ∈ RT×T , could be trivially obtained
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via, with t > k,

Rtk =

{
1 if sfx[t] = k,

0 otherwise,

and filling the main diagonal line with 1.
The construction and model selection algorithms for VMO are

documented in [13, 14]. A visualization of how a VMO-SSM is ob-
tained is shown in Fig. 1. The advantage of using a VMO to cre-
ate an SSM over the traditional frame-by-frame pair-wise distance
approach is that a VMO selectively chooses frames to calculate dis-
tances with for each frame based on if common suffices are shared
between two frames. The selective behavior leads to a more efficient
calculation than the traditional exhaustive manner (O(T log T ) ver-
sus O(T 2) [15]) and also keeps track of recurrent motifs within the
time series. The other difference of using a VMO for SSM calcula-
tion is that the reduction from a multivariate time series to a symbolic
sequence utilizes the concept of information dynamics [10, 11] that
aims at modeling the evolving information dynamics as the time se-
ries unfolds itself. In the case for the VMO, an information theoretic
measurement, Information Rate (IR) [10], is maximized to deter-
mine the threshold for frame selection during suffix assignment. Let
xT1 = {x1, x2, . . . , xT } denote time series x with T observations,
H(x) the entropy of x, the definition of IR is

IR(xt−1
1 , xt) = H(xt)−H(xt|xt−1

1 ).

IR is the mutual information between the present and past observa-
tions and is maximized when there is a balance between variations
and repetitions in the symbolized signal. The exact algorithms for
calculating IR with a VMO is provided in [13] and not repeated here.

3. SEGMENTATION ALGORITHM

To show how the VMO-SSM could help improving the music struc-
ture segmentation task, and to highlight the difference between the
using a VMO-SSM and a traditional SSM, two existing work uti-
lizing binary SSMs are adopted in this work. For both work, their
original SSMs are replaced by VMO-SSMs. The first segmentation
algorithm is the spectral clustering (SC) approach proposed in [6]
and the second is the combination of structure features and segment
similarity (SF) proposed in [8].

3.1. Spectral Clustering

In [6], the observation is that the partition of the graph defined by a
connectivity matrix into m connected components by spectral clus-
tering is effectively the same as segmenting the time series with m
distinguished sections (the total number of segments could be more
than m with repetition of any of the sections). A series of opera-
tions are applied on the SSM to obtain a connectivity matrix, then
spectral clustering is applied on the connectivity matrix to obtain a
low-dimensional representation of repetitive structures. The oper-
ations include nearest neighbor thresholding, smoothing with a me-
dian filter, adding local linkages, balancing local and global linkages,
linkage weighting and feature fusion.

By replacing traditional SSM originally used in [6] with the bi-
nary VMO-SSM described in section 2, only median filtering and
adding local linkages are needed to obtain the connectivity matrix
R+ in this work. The median filter is applied in the diagonal di-
rection to suppress erroneous entries, fill missing blanks and keep
sharping edges of the diagonal stripes in the binary SSM

R′ = median(Ri+t,j+t|t ∈ −ω,−ω + 1, . . . , ω).
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Fig. 1. (1) A synthetic 4-dimensional time series. (2) A VMO
structure with symbolized signal {a, b, b, c, a, b, c, d, a, b, c}, lower
(dashed) are suffix links. Values outside of each circle are the length
of longest repeated suffix. (3) Symbolized signal. (4) The VMO-
SSM obtained from the symbolized signal in (3).

The operation of adding local linkage is defined as

δij =

{
1 if |i− j| = 1,

0 otherwise

R+
ij = max(δij , R

′
ij).

Let I denote a identify matrix with dimensionN , andD the diagonal
degree matrix of R+. The symmetric normalized Laplacian matrix
of R+ is then calculated as

L = I −D
−1
2 R+D

−1
2 .

The eigenvectors of L could be interpreted as component member-
ship functions of connected components on a graph defined by L
[16]. The segmentation then follows standard spectral clustering
algorithm as documented in [16]. In short, the first m eigenvec-
tors with m smallest eigenvalues are concatenated to form a matrix
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Fig. 2. (Left) The binary VMO-SSM. (Right) The eigenvector ma-
trix, Y , of “All You Need is Love” from Beatles.

Y ∈ RT×m with rows normalized, then each row of Y is treated as
one observation in k-means clustering with k = m. The assigned
label from k-means clustering is the resulting segmentation labels.
Boundaries are inferred from finding label changes between adjacent
frames. Visualizations of the R+ matrix and Y matrix are depicted
in Fig. 2.

3.2. Structure Features and Segment Similarity

The details of the SF algorithm could be found in [8]. The goal of
that work is to base the algorithm on a local presentation (frame-
wise) of global structures (from tim-lag SSM). Similar to the re-
placement process described in section 3.1, the original binary SSM
is replaced by the VMO-SSM. After obtainingR from the VMO, the
following steps are applied to find the boundaries first; 1) a time-lag
matrix L is obtained fromR. 2) L is convolved with a 2-D Gaussian
kernel. 3) Boundaries are identified via peak-picking on a novelty
curve derived from L. To further obtain segment labels, segment-to-
semgent similarities are calculated based on a DTW-like score given
R. The resulting similarities are stored in a square matrix Ŝ with
dimensions equal to the number of segments identified from bound-
ary detection. A dynamic threshold based on the statistics of Ŝ is
used to discard non-similar segments. Transitivity between similar
segments is induced by iteratively applying matrix multiplication of
Ŝ with itself and threshold. Segment labels are then obtained from
the rows of Ŝ. Parameters for this algorithm include the standard
deviations of the Gaussian kernel, {sL, sT }, for time-lag and time
axis respectively, and peak-picking window length λ. An illustration
of L, the novelty curve and Ŝ derived from R is shown in Fig. 3.

4. BOUNDARY ADJUSTMENT

Observations after examining the segmentation results from last sec-
tions reveal that often times the segmentation algorithm is capable
of locating the boundaries between segments within a window of a
few seconds but is not capable of locating the major change point
within a window less than 1 second. The reason might be due to
the smoothing on the SSM to obtain R′ or L. To remedy the afore-
mentioned situation, an iterative boundary adjustment algorithm is
proposed to fine-tune the segmentation boundaries to nearby local
maxima in terms of the dissimilarity between adjacent segments.

The criteria to refine boundaries is that the distance between
two adjacent segments should be the farthest at the refined bound-
ary points. Based on the criteria, the proposed algorithm adopts the
method proposed in [17] where the distance between two segments
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Fig. 3. (Left top) The smoothed time-lag matrix L from a VMO-
SSM-SSM. (Left bottom) The novelty curve derived from the time-
lag matrix. (Right) The segment-to-segment similarity matrix Ŝ of
“All You Need is Love” from Beatles.

Algorithm 1 Iterative Boundary Adjustment
Require: Boundary points B (without beginning and ending frame), fea-

tures X , window size W , iteration limit N and adjustment cost C.
1: n← 0
2: while True do
3: c← 0
4: B′ ← B
5: Randomly permute B′
6: for b ∈ B′ do
7: κ← K-L divergence of the two segments in X adjacent to b
8: b′ ← b
9: for t ∈ {b−W : b+W} do

10: κ′ ← K-L divergence of the two segments inX adjacent to t
11: if κ′ > κ then
12: κ← κ‘
13: b′ ← t
14: end if
15: end for
16: b← b′

17: c += abs(b− b′)
18: end for
19: B ← B′

20: n += 1
21: if c ≤ C||n ≥ N then
22: break
23: end if
24: end while
25: return B

are defined as the distance between the empirical distributions of
the two segments. The distance criteria boils down to calculating
the Kullback-Leibler divergence between the two segments, where
the two segments are each modeled by a Multinomial distribution.
Since the effect of changing one boundary point propagates to other
adjacent segments of neighboring boundaries, an iterative algorithm
is devised as shown in Alg. 1.

Alg. 1 resembles an expectation-maximization algorithm in the
sense that each iteration (outer for-loop in Alg. 1) stochastically cy-
cles through all boundaries and adjusts them to maximize the K-L
divergence of adjacent segments, then fixes the adjusted boundaries
as new boundaries and proceeds to the next iteration until conver-
gence criteria are met. The stopping criteria are the total number of
iteration N and the total length of boundaries moved C. Empirical
observation of running Alg. 1 shows that the total length of bound-
ary moved at each iteration, c, monotonically decreases with number
of iterations i.
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Boundaries Segmentations
Algorithm F0.5 P0.5 R0.5 F3 P3 R3 Fpair Ppair Rpair Sf So Su

SF (Chroma) [8] − − − 77.4 75.3 81.6 71.1 78.7 68.1 − − −
VMO+SF (Chroma) 36.29 33.84 40.81 69.02 64.27 77.7 61.22 69.99 58.59 67.38 64.59 73.25
VMO+SF* (Chroma) 37.37 35.08 41.94 61.5 57.74 68.94 56.16 63.24 54.4 62.81 60.99 67.5

VMO+SC (CQT+MFCC) 34.34 29.38 43.52 64.46 55.09 81.64 55.9 68.63 49.87 62.50 57.59 70.54
VMO+SC* (CQT+MFCC) 38.41 34.28 45.47 60.98 54.29 72.26 52.84 61.08 49.05 60.02 55.87 64.84

VMO+SC (Chroma) 31.87 26.39 42.18 61.98 51.2 82.2 52.81 64.57 47.25 59.56 54.93 67.23
VMO+SC* (Chroma) 33.80 28.88 42.07 60.83 52.06 75.45 49.98 57.54 46.40 56.9 53.04 61.37
SC [6] (CQT+MFCC) 31.9 26.03 45.39 57.46 46.95 81.05 54 65.16 48.93 59.56 55.05 67.41
C-NMF [4] (Chroma) 24.89 24.52 26.41 60.41 59.84 63.45 53.53 58.29 52.65 57.2 55.85 60.63

OLDA [5] (Multi-feature) 29.6 29.7 32 53.5 55.3 55 − − − − − −
SI-PLCA [18] (Chroma) 28.27 39.57 22.74 50.12 70.59 39.97 49.36 42.67 65.17 48.08 62.28 42.67

CC [19] (Chroma) 25.06 27.3 23.86 55.06 60.17 52.16 49.18 62.91 41.06 56.5 50.36 66.5

Table 1. F , P and R represent F1-score, precision and recall respectively. Underscores of 0.5 and 3 represent 0.5 and 3 seconds window hit
rate scores. pair stands for frame clustering. So, Su and Sf are the normalized conditional entropies of over-, under-segmentation and their
F1-scores. Results of SF and OLDA are from [5, 8]. Results of other algorithms are from [4]. Algorithms followed by (*) are the ones with
boundary adjustment algorithm. Parenthesis refers to the feature used for that algorithm. Numbers in bold are the highest F1-score for each
metric.

5. MUSIC STRUCTURE SEGMENTATION

The Beatles-ISO dataset has 179 annotated songs and is widely used
in evaluating segmentation algorithms [3,5,8,18,19]. The segmenta-
tion experiment aims at identifying a segmentation of a given audio
recording and compare the segmentation with human annotations.

5.1. Experiments

To evaluate the effect of the VMO-SSM and the boundary adjust-
ment algorithm, the proposed framework is evaluated against the
Beatles-ISO dataset and compared to existing work on the same
dataset. Three standard features and their combinations are con-
sidered in this experiment; constant-Q transformed spectra (CQT),
chroma and MFCCs. All audio recordings are down-sampled to
22050Hz, analyzed with a 93ms window and 23ms hop. CQT
are calculated between frequency range [0, 2093]Hz with 84 bins.
Chroma are derived from CQT by folding the 8 octaves into 12
bins. MFCCs are calculated from 128 Mel bands and 12 MFCCs are
taken. All features are beat-synchronized using a beat-tracker [20]
with median-aggregation. Similar to [6, 8], features are then stacked
using time-delay embedding with one step of history and one step
of future. Each dimension of each feature is normalized along the
time axis. To combine different features, they are simply stacked
and different dimensions are assumed to have equal importance.

A parameter sweep is done to find the best set of parameters in
this experiment. Cosine distance is used in the VMO distance calcu-
lation. For SC, the median filtering window ω is 17. The number of
basis in SC (or the number of distinguished sections), m, is 5. For
SF, the standard deviations for time-lag and time axis, {sL, sT }, are
0.5 and 12. The peak-picking window length λ is 9. The parameters
for the boundary adjustment algorithm, W , N and C, are {4, 10, 2}
respectively.

5.2. Evaluation

The evaluation results of the proposed framework along with the
ones from other existing work are shown in Table 1. The metrics
used follow the ones proposed in Music Information Retrieval Eval-
uation eXchange (MIREX). The evaluation could be understood in
two aspects. The first aspect is the performance on retrieving bound-
aries and the second one is the performance on assigning labels to

regions defined by retrieved boundaries. For boundary hit rate, the
combination of the VMO, SC and boundary adjustment outperforms
all other existing work by a margin of at least 7% (in [8] it is not re-
ported) for 0.5s window tolerance. For 3s window tolerance, despite
being inferior to SF, the approaches using the VMO-SSM are still
superior to other existing work. The boundary adjustment algorithm
turns out introducing a trade-off between short- and long-time toler-
ance boundary hit rate. For SC the trade-off of F0.5 and F3 is accept-
able with F0.5 always improved slightly more than the degradation
of F3. It could be observed that it is not worthwhile applying the
boundary adjustment algorithm on SF since the degradation of F3 is
far more than the improvement on F0.5. The discrepancy between
applying the boundary adjustment algorithm on SC and SF could
be understood by the nature of the segmentation algorithms, since
SF focuses on finding boundaries from SSM more directly than the
matrix decomposition approaches, there might be less room left for
improving boundary accuracies in the post-processing stage for SF.
For segmentations, original SF ranks the highest in pair-wise cluster-
ing F-score and the combination of the VMO and SF is the runner-
up. For the F-score of normalized conditional entropy, the VMO-SF
combination returns the highest score (it is not reported in [8]). For
matrix decomposition approaches, replacing traditional SSMs with
VMO-SSMs achieves comparable or superior performances than ex-
isting work in segment labeling evaluation.

6. CONCLUSIONS AND DISCUSSIONS

In this work, an alternative SSM extracted from the VMO is shown
to be reliable replacing the traditional SSM in music segmentation
tasks. In general, using the VMO-SSM improves boundary detec-
tion accuracy and achieves comparable or superior performances in
segment labeling to state-of-the-art. The reason that the VMO-SSM
is better in boundary detection for matrix decomposition approaches
is that the selective mechanism during the construction of the VMO
suffix structure discards unnecessary calculations, and in turn leads
to a cleaner binary SSM than the one from traditional approach.
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