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ABSTRACT
Rāga motifs are the main building blocks of the melodic struc-

tures in Indian art music. Therefore, the discovery and characteri-
zation of such motifs is fundamental for the computational analysis
of this music. We propose an approach for discovering rāga mo-
tifs from audio music collections. First, we extract melodic patterns
from a collection of 44 hours of audio comprising 160 recordings be-
longing to 10 rāgas. Next, we characterize these patterns by perform-
ing a network analysis, detecting non-overlapping communities, and
exploiting the topological properties of the network to determine a
similarity threshold. With that, we select a number of motif candi-
dates that are representative of a rāga, the rāga motifs. For a formal
evaluation we perform listening tests with 10 professional musicians.
The results indicate that, on an average, the selected melodic phrases
correspond to rāga motifs with 85% positive ratings. This opens up
the possibilities for many musically-meaningful computational tasks
in Indian art music, including human-interpretable rāga recognition,
semantic-based music discovery, or pedagogical tools.

Index Terms— Rāga motif, melodic phrases, melodic similar-
ity, Indian art music, Carnatic music

1. INTRODUCTION

Indian art music (IAM) comprises two music traditions, Hindus-
tani music [1] and Carnatic music [2]. Both these music traditions
are heterophonic in nature, with their melodies being based on the
rāga framework [3]. Rāgas are characterized by a set of svaras
(roughly speaking, notes), ārōha-avrōha (the ascending and de-
scending melodic progression) and, most importantly, by a set of
characteristic melodic phrases referred to as rāga motifs. Their func-
tional role is to act as building blocks to construct melodies, and as a
base for the artist to express his/her creativity through improvisation
within the rāga grammar. Rāga motifs capture the essence of a rāga,
and are the prominent cues for its identification [4]. Discovery of
rāga motifs can pave the way for efficient rāga-based music retrieval
from large audio archives, semantically meaningful music discovery
and navigation, and several applications around music pedagogy.

A rāga motif, in textbook notation, is represented as a sequence
of svaras. However, there is no explicit set of rules for rāga motifs,
and its realization in a musical performance is subject to the artist’s
interpretation and creativity. The high degree of pitch and timing
variation across the occurrences of such motifs makes the task of pat-
tern discovery very challenging in IAM. The lack of melody segmen-
tation models and the large duration of audio recordings further com-
plicate this task. As a result, existing research on this topic within
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IAM is primarily focused on computing robust melodic representa-
tions and similarity measures [5–11]. Descriptive music scores and a
reliable melody transcription system are practically non-existent for
IAM. Therefore, the majority of these approaches work on a contin-
uous pitch-based melody representation. Though recent proposals
exploiting culture specificity for improving similarity look promis-
ing [8,12], their overall accuracy is still far from perfect. This poses a
challenge to the pattern characterization process, as the output of the
pattern discovery contains many musically-meaningless matches.

Another challenge in discovering rāga motifs is the presence
of other categories of repeating melodic patterns. Though a rāga
motif recurs in a rāga rendition, not all repeating patterns are rāga
motifs. We can broadly classify such patterns other than the rāga
motifs into two categories: (a) patterns that occur across different
rāgas, which are not specific to a rāga or a composition, here called
gamaka motifs1, and (b) patterns that are specific to a composition
within a rāga but do not occur in any another composition, here
called composition-specific motifs. Neither of these two type of
melodic patterns can be used to categorize or identify a particular
rāga. Hence, we here focus on the characterization of melodic pat-
terns in order to distinguish rāga motifs from other types of motifs.

There are a number of existing approaches for the discovery and
characterization of melodic motifs in diverse contexts, and for dif-
ferent music traditions [13–19]. A majority of these approaches rely
on a symbolic music representation. This could be attributed to the
challenges involved in the extraction of a reliable melodic represen-
tation from raw audio recordings [19], and to the easy availability of
descriptive music scores in these music traditions. In IAM, there is
no standardized symbolic representation of melodies. Furthermore,
the concepts used by musicians to describe melodic motifs are diffi-
cult to capture in a symbolic representation. Due to the fundamental
differences between the western-classical music based representa-
tion, used in most studies, and the specificities of IAM, we need an
approach not based on symbolic representation of the melodies.

We present here a novel approach to characterize the melodic
patterns, that are discovered in audio music collections of IAM, in
order to identify rāga motifs. For extracting melodic patterns, we
make use of an existing unsupervised approach (Section 2.1). We
then propose to perform a network analysis to cluster these patterns
into communities (Section 2.2). In this process, we also present an
approach to determine a similarity threshold, which is yet another
challenge in such tasks. We then empirically devise a measure to
rank the detected communities according to rāga representativeness
(Section 2.2.3). Finally, we validate the top-ranked communities by
performing listening tests with professional musicians (Section 4).
The results are very encouraging, with 85% positive ratings.

1For example Kampita, a specific type of an oscillatory melodic move-
ment on a svar [4].
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Fig. 1. Block diagram of the proposed approach.

2. METHOD

The block diagram for the proposed approach is shown in Figure 1.
There are two main blocks: (a) melodic pattern discovery and (b)
pattern characterization. Note that, we do not refer to discovered
melodic patterns (Section 2.1) as motifs, since they only represent
repeating melodic fragments, with no specific musical identity at this
stage. In the pattern characterization step (Section 2.2) we cluster
these patterns and identify the ones that represent rāga motifs.

2.1. Melodic Pattern Discovery

As mentioned, discovering melodic patterns in audio recordings of
IAM is a challenging task. To get a reliable input for our approach,
we employ the IAM pattern discovery system we presented in [10].
This is one of the few unsupervised systems, we are aware of, that
can discover meaningful melodic patterns in large-scale collections
of IAM. We use the same parameter settings and the implementa-
tion of the method as reported in the paper. This pattern discovery
method consists of three main processing blocks (Figure 1). The
method uses tonic normalized predominant pitch as the melody rep-
resentation, and considers all possible 2 second melodic segments
as the pattern candidates in the data processing block. This duration
is chosen based on the average human annotated phrase duration re-
ported in recent studies [12]. In the intra-recording pattern discovery
block, the method discovers melodically similar seed pattern pairs
within each audio recording. Subsequently, in the inter-recording
pattern detection block, every seed pattern is then used to perform
a search across all the recordings in the dataset to obtain its nearest
neighbors. This approach uses dynamic time warping based melodic
similarity, and employs several lower-bounding techniques to reduce
the computational complexity of the task. For a detailed explanation
of this approach we refer to [10].

2.2. Melodic Pattern Characterization

As explained, a discovered melodic pattern can correspond to ei-
ther a rāga motif, a composition-specific motif or to a gamaka motif
(Section 1). The aim of the pattern characterization block is to clus-
ter these discovered patterns and to characterize the obtained clusters
in order to identify the ones that represent different rāga motifs. For
this, we propose to perform a network analysis as described below.

2.2.1. Pattern Network Generation

We start by building an undirected weighted network using the dis-
covered patterns from the previous step. The patterns are considered
as the nodes of the network and the edge between any two patterns (i,

Ts Ts 

Fig. 2. Evolution of the clustering coefficient of G and Gr over dif-
ferent thresholds and for different statistical confidence values used
for disparity filtering (legend).

j) is weighted based on the distance Dij between the patterns. No-
ticeably, Dij is computed using the same distance measure as used
in the pattern discovery block of Section 2.1. The weight of the edge
Wij between the nodes i and j is given by Wij = e

−Dij/D̄, where,
D̄ is the mean of Dij over every combination of i and j.

2.2.2. Network Filtering

The main objective of this processing block is to filter the network to
retain only the musically meaningful connections between the nodes.
Since the edge weights between the pairs of melodically similar and
dissimilar nodes may vary by orders of magnitude, we first consider
to exploit this heterogeneity to extract the network’s backbone. We
therefore need to apply disparity filtering [20] to preserve only the
edges that represent statistically significant deviations with respect
to a null model of edge weight assignment for every node. The only
parameter used in the disparity filtering is the statistical confidence
value. We iterate over 5 different confidence values {99.99, 99, 90,
80, 50}. However, as we will show, the application of disparity fil-
tering is found to be quite irrelevant for the present case.

We next proceed to filter edges in the network based on a
melodic similarity threshold TS . We propose to estimate TS based
on the topological properties of the network. For this, we analyze
the evolution of the clustering coefficient of both the obtained net-
work G and the corresponding randomized network Gr over a range
of similarity thresholds. Clustering coefficient measures the extent
to which the nodes in a network tend to cluster together [21]. The
randomized network Gr is obtained by swapping the edges between
randomly selected node pairs such that the degree of each node is
preserved [22]. This way, Gr can be considered as the maximally
random network with that particular degree distribution. In Figure 2,
we show the evolution of the clustering coefficient of G and Gr over
different similarity thresholds (indicated by exponentially spaced
bins). In addition, we can also see the clustering coefficient curves
for different statistical confidence values used for disparity filtering.
The evolution of the clustering coefficients is used for obtaining a
similarity threshold as explained below.

We hypothesize that the more musically meaningful TS is, the
higher is the difference between the clustering coefficients of G and
Gr . We therefore select TS = 10. Note that even though the sim-
ilarity threshold corresponding to TS = 1 results in a higher value
of the clustering coefficient, we reject it because the filtered network
consists only of a small number of nodes. These nodes correspond
to near-exact pattern repetitions discovered within the same record-
ing [10]. Such patterns typically represent composition-specific mo-
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tifs, and hence are irrelevant in our context. In Figure 2, we also
observe that the disparity filtering using a confidence value higher
than 80% significantly lowers the clustering coefficient, which can
be attributed to the removal of musically meaningful edges in the
network. On the other hand, given TS = 10, the disparity filter-
ing with a confidence value lower than 80% does not significantly
affect the clustering coefficient. We can thus conclude that, in the
given scenario, disparity filtering does not bring in any clear advan-
tage. Finally, after applying TS , we transform G to an unweighted
network.

2.2.3. Community Detection and Characterization

We next take the unweighted undirected network that results from
the previous step, and perform a non-overlapping community de-
tection using the method proposed in [23]. This method is based on
modularity optimization and is parameter-free from the point of view
of the user. It has been extensively used in various applications [24]
and can deal with very large networks [23]. We use the implemen-
tation available in networkX [25], a Python language package for
exploration and analysis of networks and network algorithms. Using
this method for our entire dataset, we obtain around 1800 communi-
ties of melodic patterns.

A community Cq is comprised of N nodes, and the node count
over different rāgas is given by the ordered list αq = (αq,1, αq,2, . . .
αq,L) such that αq,i ≥ αq,j , ∀ i < j, where each element in αq de-
notes the number of nodes in a particular rāga and L is the total num-
ber of unique rāgas comprising the community. Similarly, the node
count over the audio recordings is given by the ordered list βq =
(βq,1, βq,2, · · · , βq,K) such that βq,l ≥ βq,m, ∀ l < m, where each
element in βq denotes the number of nodes belonging a particular
audio recording and K is the total number of recordings comprising
the community. For both these cases,

∑L
i=1 αq,i =

∑K
l=1 βq,l = N .

We now proceed to characterize the detected communities in or-
der to identify the ones that represent rāga motifs. For that we first
categorize a community Cq as belonging to the rāga Rq correspond-
ing to the maximum number of nodes αq,1 in that community. Sub-
sequently, for each rāga, we rank all the communities belonging to
that rāga. To do so we empirically devise a goodness measure γ,
which denotes the likelihood that a community Cq represents a rāga
motif. We propose to use

γ = Nρ4λ, (1)

where ρ is an estimate of the likelihood of rāga Rq in Cq ,

ρ =
αq,1

N
, (2)

and λ indicates how uniformly the nodes of the community are dis-
tributed over audio recordings,

λ =

∑K
l=1 l · βq,l
N

. (3)

Higher λ implies a more uniform distribution. Since a community
that represents a rāga motif is expected to contain nodes from a sin-
gle rāga (high value of ρ) and the nodes belong to many different
recordings (high value of λ), the goodness measure γ is high for
such a community. In general we prefer large communities, but,
to avoid detecting large communities (high value of N) correspond-
ing to gamaka motifs (low value of ρ) we use a fourth power on ρ.
Composition-specific motifs are expected to have a low λ, as they
are not repeated across multiple recordings.

Rāga Dur #Com #Art Svaras
Hamsadhvani 2.46 12 14 s r2 g3 p n3

Kāmavardhini 3.94 13 16 s r1 g3m2 p d1 n3

Darbār 2.59 8 13 s r2 g2m1 p d2 n2

Kalyān. i 6.94 9 16 s r2 g3m2 p d2 n3

Kāmbōji 6.91 12 13 s r2 g3m1 p d2 n2 n3

Bēgad. a 3.41 9 16 s r2 g3m1 p d2 n2 n3

Kāpi 2.24 12 16 s r2 g2 g3m1 p d2 n2 n3

Bhairavi 5.33 7 16 s r2 g2m1 p d2 d3 n2

Behāg 1.51 12 16 s r2 g3m1m2 p d2 n2 n3

Tōd. i 8.75 12 16 s r1 g2m1 p d1 n2

Total 44.08 106 57 -

Table 1. Details of the dataset in terms of the duration (Dur) in
hours, number of unique compositions (#Com), unique lead artists
(#Art), and the svaras for each rāga. Here s, r, g,m, p, d, n denote
the 7 svaras in IAM and the subscript indicates the variant of the svar
for a particular rāga (cf. [2]).

3. EVALUATION

3.1. Music Collection

The music collection used in this study is compiled as a part of the
CompMusic project [26, 27]. The collection comprises 44 hours
of polyphonic audio music recordings of Carnatic music across 10
different rāgas. For each rāga we select 16 music pieces, which
amounts to a total of 160 recordings. There are 139 vocal music
recordings and 21 instrumental recordings comprising violin, vīn. a
and bamboo flute. In Table 1, we summarize the relevant details of
the dataset. We see that it is diverse in terms of the number of unique
compositions and number of lead artists. Furthermore, it includes
different forms of compositions (kīrtana, varnam and viruttam) and
recordings containing varied improvised sections such as ālāpana,
nereval and kalpanā-svaras. The chosen rāgas contain diverse set of
svaras (notes) both in terms of the number of svaras and their pitch
classes (svarasthānās). From Table 1, we also notice that several
rāgas such as Kalyān. i, Kāmbōji and Bēgada have a large fraction of
svaras in common. We refer to them as allied rāgas. This further in-
creases the complexity of the task at hand, since the discrimination
between the phrases of allied rāgas may be based on subtle melodic
nuances.

3.2. Setup and Evaluation Measures

Given the unsupervised nature of this study, we perform a listening
test to formally evaluate the extent to which the selected melodic
phrases correspond to rāga motifs. For each of the 10 rāgas in the
dataset, we select the top 10 communities based on the goodness
measure γ (Eq. 1). From each of these communities, we select their
representative melodic phrase based on the betweenness centrality of
the nodes [21], i.e., the node with the highest betweenness centrality
is considered as the representative melodic phrase of that commu-
nity. In case of a tie, we select the one with the highest node degree.
Finally, we arrive at a set of 100 melodic phrases, which are then
used to perform the listening test. These audio examples are also
made available online2.

For the listening test we select 10 professional Carnatic musi-
cians with over 15 years of formal music training. Each musician
is presented with the audio fragments corresponding to the selected

2http://compmusic.upf.edu/node/277
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Fig. 3. Mean musician rating per melodic phrase for each rāga:
Kāpi (Kp), Hamsadhvani (Hd), Kāmavardhini (Kv), Bhairavi (Bh),
Behāg (Bg), Tōd. i (Td), Bēgad. ā (Bd), Kalyān. ī (Kl), Darbār (Db),
Kāmbōji (Kb).

melodic phrases in a random order. They are also presented with
the rāgas corresponding to the melodic phrases. The musicians are
asked to rate each melodic phrase based on whether it is a character-
istic phrase of that rāga. We use binary ratings (‘Yes’ or ‘No’).

The audio fragments were segmented with a one second buffer
on either side of the phrase to offer some context and reduce the
effect of abrupt boundaries. In order to quantify the musicians’ as-
sessment, we use mean ratings for each phrase p, µp, considering
‘Yes’ as 1 and ‘No’ as 0. For analyzing the ratings per rāga, we
study the mean and standard deviation of all µp for phrases in every
rāga, which we denote by µr and σr , respectively.

4. RESULTS AND DISCUSSION

We first analyze the musicians’ ratings at the level of melodic
phrases. In Figure 3, we show µp for the 100 selected melodic
phrases, where the grouping is based on their corresponding rāgas.
We find that the mean and the standard deviation of µp for the
melodic phrases is 0.85 and 0.16, respectively. For a better under-
standing of µp across phrases and the overall musicians’ agreement,
we show the histogram of µp in Figure 4. We see that 33 melodic
phrases are rated as rāga motifs by all 10 musicians and 25 phrases
are rated as rāga motifs by 9 out of 10 musicians. Similarly, the
musicians’ agreement can be inferred for the rest of the phrases
from this histogram. We observe that 91% of the phrases are always
marked as rāga motifs by at least 7 out of 10 musicians.

We now proceed to analyze the results for different rāgas. In
Table 2, we summarize mean µr and standard deviation σr of µp

for each rāga. We observe that there is a considerable amount of
variation in µr across the rāgas. It ranges from 0.75 for rāga Kāpi
to 0.92 in the case of rāga Tōd. i. An interesting observation here is
that the phrase-based rāgas3 are the top performing rāgas with the
exception of rāga Darbār. From Table 2 and Table 1, we notice a
strong correlation between µr and the total duration of the audio
recordings across rāgas. This suggests that longer music pieces are
likely to facilitate the discovery of rāga motifs owing to more number
of occurrences of such melodic phrases.

We now examine the melodic phrases with low scores. An in-
vestigation of 9 out of 100 phrases that obtain µp ≤ 0.6 reveals that
many of these phrases are composition-specific phrases that do not
characterize the rāga. The method wrongly identifies them as rāga
motifs because their associated communities have a high γ score
owing to a high λ value. This can be attributed to the fact that these

3Rāgas whose identity is derived based on phraseology than svaras [4].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
µp

0
5

10
15
20
25
30
35

C
ou

nt

Fig. 4. Histogram of µp for all 100 melodic phrases.

Rāga µr σr Rāga µr σr

Hamsadhvani 0.84 0.23 Bēgad. a 0.88 0.11
Kāmavardhini 0.78 0.17 Kāpi 0.75 0.10
Darbār 0.81 0.23 Bhairavi 0.91 0.15
Kalyān. i 0.90 0.10 Behāg 0.84 0.16
Kāmbōji 0.87 0.12 Tōd. i 0.92 0.07

Table 2. Mean µr and standard deviation σr of µp for each rāga.
Rāgas with µr ≥ 0.85 are highlighted.

phrases are discovered from multiple recordings, since their corre-
sponding compositions have several instances in the dataset. This
suggests that, possibly, the goodness measure γ can be made more
robust to such cases by computing λ using the distribution of nodes
over unique compositions rather than over audio recordings.

The results show that the proposed method successfully discov-
ers rāga motifs with a high accuracy. We see that, even for the al-
lied rāgas present in the dataset such as Kāmbōji and Bēgada (Sec-
tion 3.1), the method is able to discover distinct characteristic rāga
motifs. As mentioned, allied rāgas are challenging because they have
a substantial overlap in the set of svaras that they comprise (see also
Table 1). Finally, on a more informal side, it is worth mentioning that
musicians were impressed when, after the listening test, they came
to know that the melodic phrases were discovered by a machine fol-
lowing an unsupervised approach.

5. CONCLUSION AND FUTURE WORK

We presented a novel unsupervised approach to discover rāga motifs
from polyphonic audio music collections of IAM and, specifically,
to distinguish them from gamaka and composition-specific motifs.
We first extracted melodic patterns from audio recordings using an
existing unsupervised approach. We then employed a network anal-
ysis and non-overlapping community detection algorithm to cluster
melodic patterns. Using the topological properties of the network,
we determined a musically meaningful similarity threshold. In ad-
dition, we devised a goodness measure for characterizing the de-
tected communities. We evaluated our method using a sizable and
representative music collection. A listening test with 10 professional
Carnatic musicians shows that the proposed method successfully dis-
covers rāga motifs with accuracy, even in the presence of allied rāgas
in the dataset. This suggests that the functional roles of different
melodic phrases in IAM can be effectively exploited to identify them
in an unsupervised manner. This, to the best of our knowledge, has
been done for the first time in this study. In the future, we plan to
extend this work to identify other melodic phrase categories such as
composition-specific motifs. Furthermore, we plan to quantitatively
evaluate the discovered melodic phrases by using them in tasks such
as rāga recognition and composition identification.
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[12] S. Gulati, J. Serrà, and X. Serra, “Improving melodic similar-
ity in indian art music using culture-specific melodic charac-
teristics,” in Int. Soc. for Music Information Retrieval Conf.
(ISMIR), Málaga, Spain, 2015, pp. 680–686.

[13] D. Conklin, “Discovery of distinctive patterns in music,” In-
telligent Data Analysis, vol. 14, pp. 547–554, 2010.

[14] D. Conklin and C. Anagnostopoulou, “Comparative Pattern
Analysis of Cretan Folk Songs,” Journal of New Music Re-
search, vol. 40, no. 2, pp. 119–125, 2010.

[15] J. L. Hsu, C. C. Liu, and A. L. P. Chen, “Discovering Nontriv-
ial Repeating Patterns in Music Data,” IEEE Transactions on
Multimedia, vol. 3, no. 3, pp. 311–325, 2001.

[16] Z. Juhász, “Motive identification in 22 folksong corpora us-
ing dynamic time warping and self organizing maps,” in Int.
Society for Music Information Retrieval, 2009, pp. 171–176.

[17] I. Knopke and F. Jürgensen, “A System for Identifying Com-
mon Melodic Phrases in the Masses of Palestrina,” Journal of
New Music Research, vol. 38, no. 2, pp. 171–181, 2009.

[18] O. Lartillot and M. Ayari, “Motivic pattern extraction in music,
and application to the study of Tunisian modal music,” South
African Computer Journal, vol. 36, pp. 16–28, 2006.

[19] T. Collins, S. Böck, F. Krebs, and G. Widmer, “Bridging the
audio-symbolic gap: The discovery of repeated note content
directly from polyphonic music audio,” in Audio Engineering
Society Conference: 53rd International Conference: Semantic
Audio. Audio Engineering Society, 2014.
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